Classification of Multisensor Images With Different Spatial Resolution

Aivars Lorencs, Ints Mednieks, Juris Sinica-Sinavskis
Institute of Electronics and Computer Science, Riga, Latvia (www.edi.lv)

Email: mednieks@edi.lv
Outline

- Classification task definition from multisensor data
- Design of separate classifiers
- Proposed data fusion approach
- Results and conclusions
Processed images

• Data presented to 2014 IEEE GRSS Data Fusion Contest by Telops Inc., Canada:
 • RGB image with ground truth for 7 land use categories
 • LWIR image in 84 bands from 7.8 μm to 11.5 μm
RGB image

Spatial resolution 0.2m

Categories:
- road
- trees
- red roof
- grey roof
- concrete roof
- vegetation
- bare soil
LWIR image band 10

Spatial resolution ~1m
The task

- Classification of high resolution pixels into land use categories
- Focusing on data from one overflight
- Design set = test set

Targets:
- Exploiting data from both sensors
- Fast method
- High overall accuracy
- Independent from image contents
Approach

- Assumption: pixels of a category are random variables with multidimensional Gaussian distribution (in both images)
- Calculate parameter estimates for each category j, for both images. E.g. for RGB:

$$\mu_j = (\mu_{j1}, \mu_{j2}, \mu_{j3})^T$$

$$\Sigma_j = \frac{1}{c_j - 1} \sum_{v=1}^{c_j} (x_v - \mu_j) \cdot (x_v - \mu_j)^T$$

c_j - number of pixels within ground truth area

$$x_v = (x_{v1}, x_{v2}, x_{v3})^T$$ - intensity vector of a pixel
Bayes classifier of RGB pixels

- Probability density for category $j = 1, 7$

$$f_j(x) = (2\pi)^{-3/2} |\Sigma_j|^{-1/2} \exp\left(-1/2 (x - \mu_j)^T \Sigma_j^{-1} (x - \mu_j)\right)$$

- Classification rule W^*: if $f_k(x)/f_j(x) \geq 1$ for each j, pixel with intensity vector x is classified as pixel of category k

- By taking logarithm from the expression and denoting the square of the Mahalanobis distance by $M_j(x) = (x - \mu_j)^T \Sigma_j^{-1} (x - \mu_j)$

we change the rule to: $M_j(x) - M_k(x) \geq \ln \frac{\Sigma_k}{\Sigma_j}$

* Equal prior probabilities assumed
Selection of bands in LWIR image

The following statistical parameters explored

- Entropy\(^1\)
- Optimum index factor \((OIF)^2\)

By means of Entropy and \(OIF\), 50 bands were dismissed, 8 from other 34 were selected manually (using bands from the whole range, not using neighbors).

- Selected bands: 4, 14, 26, 36, 47, 57, 69, 78

Further work needed

Classifier of LWIR pixels

- Intensity vectors of pixels: \(\mathbf{y} = (y_1, y_2, \ldots, y_8)^T \)
- Parameters: mean vector \(\mathbf{\mu}'_j = (\mathbf{\mu}'_{j1}, \mathbf{\mu}'_{j2}, \ldots, \mathbf{\mu}'_{j8})^T \)
 covariance \(\mathbf{S}_j = \frac{1}{c'_j - 1} \sum_{\nu=1}^{c'_j} (\mathbf{y}_\nu - \mathbf{\mu}'_j) \cdot (\mathbf{y}_\nu - \mathbf{\mu}'_j)^T \)

where \(c'_j \) - number of pixels within ground truth area in LWIR

- Probability density:
 \[g_j(\mathbf{y}) = (2\pi)^{-8/2} |\mathbf{S}_j|^{-1/2} \exp\left(-1/2 (\mathbf{y} - \mathbf{\mu}'_j)^T \mathbf{S}_j^{-1} (\mathbf{y} - \mathbf{\mu}'_j)\right) \]

- Classification rule \(V \): if \(g_k(\mathbf{y}) / g_j(\mathbf{y}) \geq 1 \) for each \(j \), pixel with intensity vector \(\mathbf{y} \) is classified as pixel of category \(k \)

- Changed:
 \[M'_j(\mathbf{y}) - M'_k(\mathbf{y}) \geq \ln \frac{|\mathbf{S}_k|}{|\mathbf{S}_j|} \]
Combined classifier

• For each pixel x, define associated pixel with intensity vector y^a

• Classification rule U: if

$$M_k(x) + M'_{k}(y^a) \leq M_j(x) + M'_j(y^a) - \ln \frac{\Sigma_k}{\Sigma_j} - \ln \frac{S_k}{S_j}$$

for each j, pixel with intensity vector x is classified as pixel of category k
Results

<table>
<thead>
<tr>
<th>User's accuracy, %</th>
<th>W</th>
<th>W'</th>
<th>V</th>
<th>V'</th>
<th>U</th>
<th>U'</th>
</tr>
</thead>
<tbody>
<tr>
<td>road</td>
<td>96</td>
<td>53</td>
<td>92</td>
<td>91</td>
<td>96</td>
<td>87</td>
</tr>
<tr>
<td>trees</td>
<td>90</td>
<td>94</td>
<td>38</td>
<td>31</td>
<td>89</td>
<td>94</td>
</tr>
<tr>
<td>red roof</td>
<td>96</td>
<td>97</td>
<td>48</td>
<td>31</td>
<td>99</td>
<td>99</td>
</tr>
<tr>
<td>grey roof</td>
<td>83</td>
<td>94</td>
<td>57</td>
<td>77</td>
<td>91</td>
<td>96</td>
</tr>
<tr>
<td>concrete roof</td>
<td>97</td>
<td>96</td>
<td>19</td>
<td>59</td>
<td>97</td>
<td>96</td>
</tr>
<tr>
<td>vegetation</td>
<td>91</td>
<td>84</td>
<td>57</td>
<td>34</td>
<td>93</td>
<td>86</td>
</tr>
<tr>
<td>bare soil</td>
<td>94</td>
<td>90</td>
<td>54</td>
<td>50</td>
<td>97</td>
<td>97</td>
</tr>
<tr>
<td>Overall accuracy, %</td>
<td>93</td>
<td>83</td>
<td>55</td>
<td>54</td>
<td>95</td>
<td>91</td>
</tr>
<tr>
<td>Kappa</td>
<td>0.91</td>
<td>0.79</td>
<td>0.45</td>
<td>0.44</td>
<td>0.94</td>
<td>0.89</td>
</tr>
</tbody>
</table>
Error matrix

<table>
<thead>
<tr>
<th></th>
<th>road</th>
<th>trees</th>
<th>red roof</th>
<th>gray roof</th>
<th>concrete</th>
<th>vegetation</th>
<th>bare soil</th>
</tr>
</thead>
<tbody>
<tr>
<td>road</td>
<td>78952</td>
<td>5</td>
<td>875</td>
<td>2103</td>
<td>71</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>trees</td>
<td>0</td>
<td>12884</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1550</td>
<td>0</td>
</tr>
<tr>
<td>red roof</td>
<td>9</td>
<td>0</td>
<td>28685</td>
<td>259</td>
<td>9</td>
<td>0</td>
<td>33</td>
</tr>
<tr>
<td>gray roof</td>
<td>854</td>
<td>0</td>
<td>507</td>
<td>28185</td>
<td>1387</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>concrete r.</td>
<td>128</td>
<td>2</td>
<td>164</td>
<td>1955</td>
<td>79995</td>
<td>0</td>
<td>26</td>
</tr>
<tr>
<td>vegetation</td>
<td>0</td>
<td>8463</td>
<td>369</td>
<td>230</td>
<td>0</td>
<td>141247</td>
<td>1207</td>
</tr>
<tr>
<td>bare soil</td>
<td>0</td>
<td>30</td>
<td>114</td>
<td>1</td>
<td>107</td>
<td>927</td>
<td>32993</td>
</tr>
</tbody>
</table>
Conclusions

• Proposed combination approach of separate classifiers is fruitful

• Proposed combined classifier seems simple and straightforward for implementation
Further work

• Explore different multidimensional distributions

• Consider clustering within defined categories

• Develop a method for choosing informative bands in LWIR image

• Develop an approach for classification of pixels related with different overflights with classifiers designed from ground truth from one overflight
Thank you for attention!

Acknowledgments: this presentation was supported by ERAF funding under the agreement No.2013/0031/2DP/2.1.1.1.0/13/APIA/VIAA/010 and Latvian National research program SOPHIS under grant agreement Nr.10-4/VPP-4/11