

Real Time Pothole Detection using Android Smartphones with Accelerometers

Artis Mednis¹², Girts Strazdins¹², Reinholds Zviedris¹², Georgijs Kanonirs¹, and Leo Selavo¹²

¹ Institute of Electronics and Computer Science, 14 Dzerbenes Str, Riga, LV 1006, Latvia

² Faculty of Computing, University of Latvia, 19 Raina Blvd., Riga, LV 1586, Latvia {firstname.lastname}@edi.lv

ESF grants: 2009/0219/1DP/1.1.1.2.0/APIA/VIAA/020
R&D Center for Smart Sensors and Networked Embedded Systems 2009/0138/1DP/1.1.2.1.2/09/IPIA/VIAA/004
Support for Doctoral Studies at the University of Latvia

Research domain

Road infrastructure as blood vessels

- Participatory sensing for data collection
- Manual vs. automatic reporting
- General purpose vs. customized embedded devices

Existing solutions

- Motes with accelerometers but only for data collection (BusNet)
- Embedded computers with external accelerometers for real time data processing (Pothole Patrol)
- Smartphones with external accelerometers for real time data processing but using very simple algorithms (Nericell, TrafficSense)
- Smartphones with built-in accelerometers in client-server solution with partial server side data processing (system developed at National Taiwan University)
- Offline data mining using complicated data processing algorithms (approach developed at University of Jyväskylä)

Technical requirements

 Detection of the potholes in real time during driving in different four-wheel vehicle types

 Different Android OS based smartphones with accelerometer sensors as hardware/software platform

 Enough resources for native communication tasks at an adequate quality level

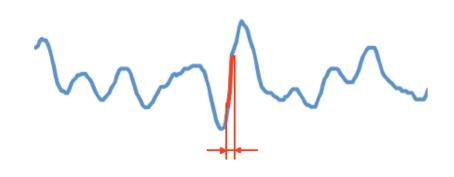
 Calibration or self-calibration functionality for adaptation to different vehicles

Our approach

- Marking of ground truth using Walking GPS approach
- Test drive session (10 laps) with 4 different smartphones
- Processing of collected data using selected algorithms
- Statistical analysis in context of marked ground truth and previous developed RoadMic methodology
- Used terminology
 - true positives >=4 events during 10 laps within <= 15m radius</p>
 - true hits events detected within <=15m to nearest ground truth item</p>

Class	24.03.2011	19.03.2010
Large potholes	3	3
Small potholes	18	18
Pothole clusters	30	30
Gaps	40	25
Drain pits	17	29
Total	108	105

4.4km long test track with marked and classified ground truth

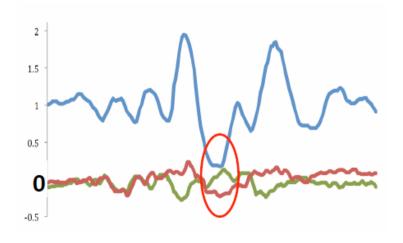

Algorithms I

Z-THRESH

- thresholding the acceleration amplitude at Z-axis
- events represented by values exceeding specific thresholds
- information about Z-axis position of accelerometer is known

Z-DIFF

- fast changes in vertical acceleration data
- events represented by two consecutive measurements with difference between the values above specific threshold level


Algorithms II

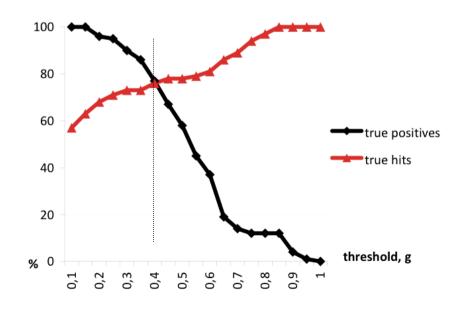
STDEV(Z)

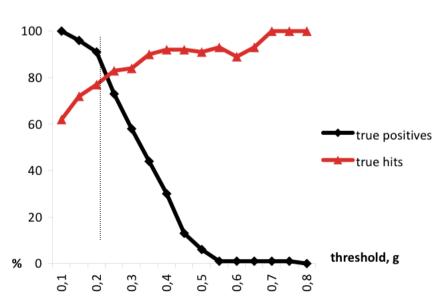
- standard deviation of vertical axis acceleration
- previously used for data post processing
- the window sizes and specific threshold levels had to be determined

G-ZERO

- events characterized by specific measurement tuple
- vehicle in a temporary free fall
- data could be analyzed without information about exact Z-axis position of the accelerometer

Evaluation I


Z-THRESH

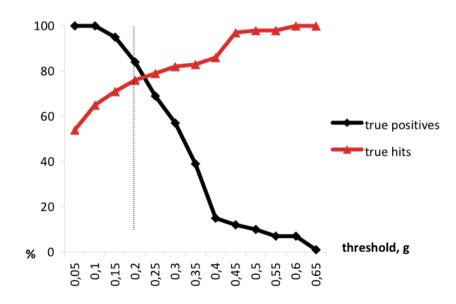

- optimal value 0.4g
- 78% true positives
- 76% true hits

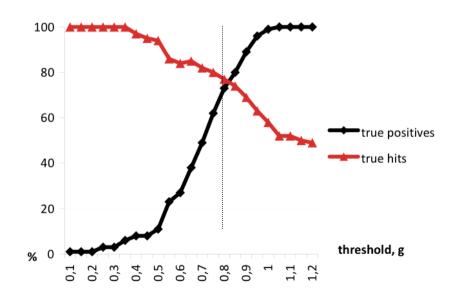
Z-DIFF

- optimal value 0.2g
- 92% true positives
- 77% true hits

Class	Z-THRESH	Z-DIFF
Large potholes	3 (100%)	3 (100%)
Small potholes	15 (83%)	16 (89%)
Pothole clusters	25 (83%)	27 (90%)
Gaps	31 (78%)	36 (90%)
Drain pits	10 (59%)	17 (100%)
Total	84 (78%)	99 (92%)

Evaluation II


STDEV(Z)


- optimal value 0.2g
- optimal window size 20
 73% true positives
- 81% true positives
- 76% true hits

G-ZERO

- optimal value 0.8g
- 76% true hits

Class	STDEV(Z)	G-ZERO
Large potholes	3 (100%)	3 (100%)
Small potholes	16 (89%)	14 (78%)
Pothole clusters	27 (90%)	27 (90%)
Gaps	30 (75%)	27 (68%)
Drain pits	11 (65%)	8 (47%)
Total	87 (81%)	79 (73%)

Conclusions

- Different algorithms different true positive values for several ground truth item classes – it could be useful during combination of algorithms
- Potholes in street junctions with low driving speed escapes from such detection approach
- Accelerometers used in the smartphones are appropriate sensors 50% of all small potholes were detected during all 10 test drive laps
- Some pictures from our field experiments:

Marking of ground truth

Android smartphones

RoadMic equipment

