
Appendix 2

National Research Program

“Cyber-physical systems, ontologies and
biophotonics for safe&smart city and society”

(SOPHIS)

Project No.2
“Ontology-based knowledge engineering technologies

suitable for web environment”

Scientific report

Period 3

2016

Introduction

The goal of the project No.2 is to develop the scientific expertise of the next
generation IT systems by researching and further developing novel competitive
model-based information technologies and their applications in modern web
environment and to transfer the created expertise and technologies to concrete
domains of Latvia’s economics, as well as introducing them into the higher education
study process.

The main tasks of the stage 3 are:

• Further development of the ontology- and web technologies-based fast query
language and its efficient implementation by introducing the view-based
extension mechanism.

• Development of data access control mechanism based on data ontologies and
web technologies, to be used for the implementation of the Ad-hoc query
language

• Development of metamodel specialization methods and their application to
building of domain specific language tools for web environment.

• Participation in SemEval-2016 competition with an improved version of the
C6.0 classification algorithm adapted for Abstract Meaning Representation
(AMR) information retrieval

• Further enhancement of the functionality of intelligent structural modeling
tool I4S for multicriterial estimation of the importance of elements in
knowledge structures of different types and granularity

• Development, merging and application of knowledge structure models in
ontology- and rule-based decision making

• Detailed development of the approach for aligning requirements/systems
engineering based knowledge flows (structures)/information artifacts

• Development and integration of different services in Web portal using open
Semantic Web resources and enhancement of software configuration
management methods

• Development of technologies for large scale NoSQL data base exploration and
visualization

• Business process runtime verification

The goal of this report is to describe the main scientific and practical results during
the reporting period. The parts of scientific results which are adequately presented in
the corresponding publications will not be described in detail in this report; direct
links to the corresponding publications will be provided instead.

2.1. Ontology based tools for knowledge analysis and mining
semantics of natural language

2.1.1. Further development of the ontology- and web technologies-
based fast query language and its efficient implementation by
introducing the view-based extension mechanism.

2.1.1.1. Basic Ideas

The query language we propose here is to be used for formulation of ad-hoc queries,
meaning queries that can be formulated in one sentence (perhaps together with some
subordinate clauses) in natural language, so that the end-user can still understand it
very well. The language will work on semistar ontologies (being ontologies that have
only one type of relations between any two basic classes – the has relation). The
simplicity of the “has” relation is the main factor, which allows query language to be
simple and similar to a natural language. It is therefore convenient to build queries in
a controlled natural language. This feature allows the language to be easily
perceptible by non-IT specialists.

The semistar data ontologies-based fast query language is efficiently implemented,
and its performance have been testes on real CCUH data and typical queries. We have
reached the query execution performance of about 0.3 seconds on average per one
query. This would match the performance of about 1 second per query if we took data
from all the hospitals in Latvia (and take into account the potential to execute the
query calculation process in parallel). These developments and results have been
described in two publications: “J.Barzdins, M.Grasmanis, E.Rencis, A.Sostaks,
A.Steinsbekk, Towards a More Effective Hospital: Helping Health Professionals to
Learn from their Own Practice by Developing an Easy to use Clinical Processes
Querying Language. // J.E.Q. Varajão et. al. (Eds.), Procedia Computer Science, Vol.
100, Elsevier, pp. 498-506, 2016” and “J.Barzdins, M.Grasmanis, E.Rencis,
A.Sostaks, J.Barzdins, Ad-Hoc Querying of Semistar Data Ontologies Using
Controlled Natural Language. // In: G.Arnicans, V.Arnicane, J.Borzovs, L.Niedrite
(Eds.), Frontiers of AI and Applications, Vol. 291, Databases and Information
Systems IX, IOS Press, pp. 3-16, 2016. (to be indexed SCOPUS),
http://ebooks.iospress.com/volumearticle/45695”.

Let us introduce an example query that will be exploited further in this section – count
Patients, who have at least one HospitalEpisode, which has Manipulation with
manipul.code=02078. This natural language sentence is understandable by the domain
expert. Let us now inspect a bit more complicated query: count Patients, who have at
least one HospitalEpisode, which has at least one TreatmentWard, which has at least
one Manipulation with manipul.code=02078. This sentence may cause a certain
ambiguity as it is not clear whether the asked Manipulation refers to HospitalEpisode
or to TreatmentWard. It could be used in both meanings. In other words, relative
pronouns such as “who” and “which” not always give us accurate understanding of
what we relate to. To cope with such situations we introduce a concept of so called
short name in our controlled natural language. Formally, the short name is a variable

over instances of the given class – count Patients p, where exists p.HospitalEpisode e,
where exists e.TreatmentWard t, where exists t.Manipulation m, where
m.manipul.code=02078. Now we are able to specify also the second of
abovementioned meanings – count Patients p, where exists p.HospitalEpisode e,
where exists e.TreatmentWard t, where exists e.Manipulation m, where
m.manipul.code=02078. We have also unified other components of the natural
language, e.g. we use the keyword “where” instead of “who”, “which” and “with”,
and the keyword “exists” instead of “have/has at least one”. The dot notation after the
short name must be perceived as the “of” relation – count Patient p, where exists
HospitalEpisode e of Patient p, where exists TreatmentWard t of HospitalEpisode e,
where exists Manipulation m of TreatmentWard t, where manipul.code of
Manipulation m equals 02078.

Formally speaking, the short name must be used before every attribute name to get rid
of ambiguities. However, in cases when it is clear to which class the particular
attribute refers the short name can be omitted. We also allow omitting other features
of the language that are not critical for understanding of queries (e.g. one can omit the
empty parentheses after the unary Date and DateTime operations like year() or
minute()).

Let us now introduce some basic notations that we will use to describe the query
language. We will use the terms parent class and child class to refer to classes that are
higher or lower in the “have” hierarchy. For example, the class “TreatmentWard” has
two parent classes – “HospitalEpisode” (direct parent) and “Patient” (further ancestor)
and one child class “Manipulation”. If x is an instance of the class “TreatmentWard”,
then its parent instances will be denoted as x.HospitalEpisode and x.Patient. In both
cases they denote exactly one instance, i.e. that of the class “HospitalEpisode” and of
the class “Patient”, respectively. We use the same dot notation also for accessing
instances of child classes, but in this case we obtain a set of instances. For example,
x.Manipulation would be a set of manipulations reachable from the given treatment
ward x.

In more complicated cases another concept of brother class is important. If x is an
instance of the class “HospitalEpisode”, then by x.HospitalEpisode we understand
y.HospitalEpisode, where y=x.Patient (i.e. y is the closest parent of x, which is also
parent class of the given class “HospitalEpisode”). Similarly, if x is an instance of the
class “TreatmentWard”, then x.OutpatientEpisode=y.OutpatientEpisode, where
y=x.Patient.

If AClass is an arbitrary class of the ontology, we will use the term AClass attribute
expression to denote attribute expressions of both AClass itself and all of its parent
classes (we assume here that parents and children share no common attribute names).
We cannot use attribute expressions of child classes here, because there can be many
children instances for the given AClass instance. We will be able to access these
instances by introducing quantors exists/notexists later.

2.1.1.2. Syntax and Semantics of the Query Language

Queries are to be written in a controlled natural language and are based on seven
sentence templates. The main part of the templates is the so called selection condition,

which is a selection condition over instances of the given class. We assume that
selection conditions are to be written in a natural language. We describe the used
language constructs more formally at the end of this section. However, the sentence
templates described in this section can be understood without knowing the precise
syntax of selection conditions.

T1. COUNT AClass [x] WHERE <selection condition>

Semantics: counts instances of AClass, which satisfy the selection condition.

Examples:

• COUNT Patients, WHERE EXISTS HospitalEpisode, WHERE
referringPhysician=familyDoctor (count of patients who have been referred to
hospital by their family doctors);

• COUNT HospitalEpisodes, WHERE dischargeTime-admissionTime>15d (how
many episodes have lasted longer than 15 days);

• COUNT HospitalEpisodes e1, WHERE EXISTS HospitalEpisode e2, WHERE
e1<>e2 AND e2.admissionTime>e1.dischargeTime AND e2.admissionTime-
e1.dischargeTime<30d (how many there have been such episodes, after which
the patient has returned to hospital in less than 30 days).

T2. {SUM/MAX/MIN/AVG/MOST} <attribute expression> FROM AClass [x]
WHERE <selection condition>

Semantics: selects instances of AClass, which satisfy the selection condition,
calculates the attribute expression for each of these instances obtaining a list to which
the specified aggregate function is then applied.

Examples:

• SUM totalCost FROM HospitalEpisodes, WHERE dischargeReason=cured
AND birthDate.year()=2012 (how much successful treatments of patients born
in 2012 have cost);

• MOST diagnosis.code FROM DischargeDiagnoses, WHERE nr=1 AND
dischargeReason=deceased (get the most frequent main (nr=1) death
diagnosis).

T3. SELECT FROM AClass [x] WHERE <selection condition> ATTRIBUTE
<attribute expression> ALL DISTINCT VALUES

Semantics is obvious.

Examples:

• SELECT FROM HospitalEpisodes, WHERE dischargeReason=deceased,
ATTRIBUTE responsiblePhysician.surname ALL DISTINCT VALUES;

• SELECT FROM DischargeDiagnoses, WHERE nr=1 AND
dischargeReason=deceased, ATTRIBUTE diagnosis.code ALL DISTINCT
VALUES.

T4. SHOW [n/ALL] AClass WHERE <selection condition>

Semantics: shows n or all instances of AClass which satisfy the selection condition.

T5. FULLSHOW [n/all] AClass WHERE <selection condition>

Semantics: the same as “show”, but shows also the child class instances attached to
the selected AClass instances.

T6. SELECT AClass x WHERE <selection condition>, DEFINE TABLE <x-expr'1>
[(COLUMN C1], …, <x-expr'n> [(COLUMN Cn)] [, KEEP ROWS WHERE <Ci
selection condition>] [, SORT [ASCENDING/DESCENDING] BY COLUMN Ci] [,
LEAVE [FIRST/LAST] n ROWS]

Semantics: selects all instances of AClass, which satisfy the selection condition, then
makes a table with columns C1 to Cn, which for every selected AClass instance x
contains an individual row, which in column C1 contains the value of the <x-expr'1>,
…, in column Cn contains the value of the <x-expr'n>. Then it is possible to perform
some basic operations with the table like filtering out unnecessary rows, sorting the
rows by values of some column and then taking just the first or the last n rows from
the table.

Examples:

• SELECT HospitalEpisodes x, WHERE dischargeReason=deceased, DEFINE
TABLE x.surname (COLUMN Surname), x.dischargeTime.date() (COLUMN
Dying_date), (COUNT x.Manipulation, WHERE manipul.code=02078)
(COLLUMN Count_02078), (SUM manipul.cost FROM x.Manipulation,
WHERE manipul.code=02078) (COLUMN cost_02078);

• SELECT CPhysicians k, WHERE name=Gatis AND EXISTS
HospitalEpisode, WHERE responsiblePhysician=k, DEFINE TABLE surname
(COLUMN Physician_surname), (COUNT HospitalEpisodes, WHERE
responsiblePhysician=k) (COLUMN Episode_count), (MOST diagnosis.code
FROM AdmissionDiagnoses, WHERE nr=1 AND responsiblePhysician=k)
(COLUMN Most_frequent_main_diagnosis), KEEP ROWS WHERE
Episode_count>5, SORT DESCCENDING BY COLUMN Episode_count,
LEAVE FIRST 10 ROWS.

Let us now talk a bit more precisely about the means for defining columns. The
expression <x-expr'i> defines the value of column Ci in the row that corresponds to
the AClass instance x. This expression can be defined in one of four ways:

<x-expr'i> ::= <x-dependent attribute expression> | <x-dependent count expression> |
<x-dependent {SUM/MAX/MIN/MOST] expression> | <x-dependent child attribute
selector expression>

• <x-dependent attribute expression>
examples: x.surname, x.dischargeTime.date(). Prefix “x.” can be used before
attributes of both x and its parents. Semantics is obvious.

• <x-dependent count expression>
examples: (COUNT x.Manipulations, WHERE manipul.code=02078),
(COUNT HospitalEpisodes, WHERE responsiblePhysician=x). In the first
example we use the prefix x in “x.Manipulations” to denote that we do not
select from the whole set of manipulations, but only from those that are
reachable from x.

• <x-dependent {SUM/MAX/MIN/MOST} expression>
examples: (SUM manipul.cost FROM x.Manipulations, WHERE
manipul.code=02078), (MOST diagnosis.code FROM AdmissionDiagnoses,
WHERE nr=1 AND responsiblePhysician=x).

• <x-dependent child attribute selector expression>
examples: (x.DischargeDiagnosis, WHERE nr=1).diagnosis.code,
(x.TreatmentWard, WHERE nr=*).ward (by * we denote the number of the
last instance of TreatmentWard connected to the given HospitalEpisode x).
This is a new kind of construction whose general form is as follows: (x.<name
of x children class A>, WHERE <selection condition>).<name of attribute a of
class A>. Its value is defined in the following way – we start by taking all
instances of class A that are reachable from x, then select of them those
instances that satisfy the selection condition and then create a list of values of
the attribute a of the selected instances. The most important case here is the
one where this list contains only one instance, e.g. in the following table
definition
example: SELECT HospitalEpisodes x, WHERE dischargeReason=deceased,
DEFINE TABLE x.surname (COLUMN Surname), x.dischargeTime.date()
(COLUMN Dying_date), (x.DischargeDiagnosis, WHERE
nr=1).diagnosis.code (COLUMN main_diagnosis), (x.TreatmentWard,
WHERE nr=*).ward (COLUMN last_ward).

T7. There are two more cases in the definition of the table, where table rows come
from other source, not being instances of some class. Being very similar these two
cases form two subtemplates of the last template:

a. SELECT FROM AClass [a] WHERE <selection condition> ATTRIBUTE
<attribute expression> ALL DISTINCT VALUES x, DEFINE TABLE…

b. SELECT FROM INTERVAL (start-end) ALL DISTINCT VALUES x,
DEFINE TABLE&helip;

Semantics of both cases is obvious.

Examples:

• SELECT FROM TreatmentWards ATTRIBUTE ward ALL DISTINCT
VALUES x, CEATE TABLE x (COLLUMN Ward), (SUM manipul.cost
FROM Manipulations, WHERE ward=x) (COLUMN Cost);

• SELECT FROM INTERVAL (1-12) ALL DISTINCT VALUES x, DEFINE
TABLE x (COLUMN Month), (COUNT HospitalEpisodes, WHERE
admissionTime.month()=x) (COLUMN Episode_count) (MOST
diagnosis.code FROM AdmissionDiagnoses, WHERE nr=1 AND
admissionTime.month()=x) (COLUMN Most_frequent_main_diagnosis).

Let us conclude this section by defining more formally the constructs of a controlled
natural language allowed in the selection conditions. They can, of course, be guessed
from the examples given above.

<AClass selection expression> ::= AClass [<short name>] [WHERE <selection
condition>]

<selection condition> ::= <attribute condition> | <quantor condition> | (<selection
condition> {AND|OR} <attribute condition>) | (<selection condition> {AND|OR}
<quantor condition>)

<quantor condition> ::= {[NOT]EXISTS | FORALL} [short name.] AClass [short
name] [WHERE <selection condition>]

Short name provides a name for the given object and can be any string different from
the class and attribute names. The abovementioned grammar provides a formal
language (for formulating selection expressions) that is close to a natural language
and therefore easily perceptible. From a natural language's point of view selection
expressions are sentences in a controlled natural language that exploit both words of a
natural language (like AND, OR, WHERE, EXISTS, NOTEXISTS) and “foreign”
words – attribute expressions whose syntax and semantics were described above. The
grammar is only needed as a guide how to build the selection expressions.

2.1.1.3. The View Definition Mechanism

Additionally to the fast ad-hoc query language we have introduced a new construct –
the view definition mechanism –, and we have implemented it efficiently. This new
feature allows end-users to create new subclasses of ontology classes by defining
them using only constructs of the query language. Therefore end-users are not obliged
to learn any new languages. An example of the subclass definition:

DEFINE SuccessfulPatient = Patient WHERE FORALL
HospitalEpisodes HOLDS dischargeReason=healthy

The newly defined subclasses are stored within the same structure as other classes, so
they can at once be used in queries in the same way the basic class from the ontology
are. For example, one can now formulate a query using the class name
“SuccessfulPatient”:

COUNT SuccessfulPatients

or

SELECT 10 SuccessfulPatients, DEFINE TABLE name, surname

This allowance of instant exploitability of subclasses hugely improves the practical
usability of the query language. The developed view definition mechanism does not
decrease the performance of the system (i.e. the time needed for obtaining answer
to queries that exploit views) significantly.

2.1.2. Development of data access control mechanism based on data
ontologies and web technologies, to be used for the implementation of
the Ad-hoc query language
Data access control is a widely investigated topic in the last decades. The most used
methods for data access control are:

• Role Based Access Control (RBAC) and Attribute Based Access Control
(ABAC)

• eXtensible Access Control Markup Language (XACML), which includes also
the above ones as profiles

• these methods are universal, but very complicated for practical usage
Therefore an important question arises whether in the case of semistar data ontologies
and the Ad-hoc Query Language a simpler approach can be found which still
preserves some universality.

This document briefly describes the main principles of user access control for the
Ad-hoc Query Language described in Section 2.1.1. The main idea is that the same
query language can be adapted for defining access rules for user categories. The same
semistar data ontology on which the queries are based can be reused for access control
as well. The proposed access control facilities are smart enough to define adequately
the access rights in such a sensitive domain as a complete internal information of a
hospital. The medicine domain is the main application area for the Ad-hoc query
language.

The basic principles of the proposed access control are fairly classic. A system
user is assumed to be a human being (not another software system). To identify a user
some authentication mechanism is used. The simplest kind of authentication is
described here, but more advanced facilities could be used as well – the authentication
is not the main topic of the document. The other aspect of access control – the
authorization (what an authenticated user can do with data) is described in detail since
there are the main innovative aspects of the approach. Namely this is the aspect where
the query language can be reused. Only the read access to data is analyzed here
because the query language is meant for easy access to data and their analysis and
visualization. In a sense, the approach uses the Role-based access control (RBAC),
but in an extended way – roles can have parameters which determine the access
details. They are defined via access rules.

In this approach the access to a data domain, e.g. to a hospital information system,
is being defined via an access control schema. This schema defines how each user
category – role – has to be authenticated and to what part of data it is authorized to
have a read access. Schema is defined as a table containing a row for each role. See an
example of such schema definition table in Fig. 2.1.2.1, with five roles defined. This
example is based on a simplified version of the semistar data ontology for Riga
Children’s Clinical University Hospital – the main example used for Ad-hoc Query
Language definition. See this ontology example in Fig. 2.1.2.2. There is one more
table in the approach for the given schema – the access table, to be used during the
query system runtime. This table is managed by the system administrator and can
change in time. It contains rows for all registered user – role combinations. A row in

this table must be in complete accordance with the row in the schema definition table
where the referenced role is defined. The values of both parameters (if required by the
definition row) must have fixed values in the access row – they must be set by the
administrator.

The first two columns of the schema definition table are related to user
authentication and subsequent local identification. The authentication column defines
the authentication facility to be used. The only fully explained case in this document
is the simplest one – the Password option. It means that the user has to enter his
registered (in the access table) password upon login to the query system. If the person
code parameter C (without brackets) is present in the definition row, it also has to be
entered by the user. The other options in this column are only briefly sketched here –
External authentication means the usage of some existing facility for such action, e.g.
via an internet banking, it must be further detailed in a definition row. The Open
access option means no user authentication at all.

The Person code column defines how the given user is identified in in the system.
In the proposed simple case this identification must be based on the user’s Person
code – a unique identifier assigned to all citizens of Latvia (“personas kods” in
Latvian, used English synonyms are Personal code, Personal identity number,
Personal number …). The usage of code is denoted by the parameter C, C without
brackets means that the code value must be mandatory supplied at login – either by
the user or by some support service (in the case of external authentication). Code in
brackets means that the presence of code can be determined by the system
administrator – it is not used as a parameter in the corresponding access rule. The
usage of this code in access rules is based on the fact that the data ontology uses this
attribute (personCode) for the classes Patient and CPhysician (see Fig. 2.1.2.2), these
classes represent both the data stored in the system and potential users of the system.

The role name is a unique name per definition table – thus each definition row
defines one role. A role can have a parameter – here denoted by n. The parameter
value can be used in access rules, but it is not directly entered by the user. The
administrator is responsible for creating access table rows so that the required login
parameters (password and possibly person code) uniquely determine a row with the
given value of n. The last column – the Access rule requires a more detailed
explanation since it is the main innovative aspect of the approach

Authentication Person

code C
Role Role

parameter
Access rule

Password C Responsible
Physician

– FULLSELECT HospitalEpisode WHERE
responsiblePhysician.personCode = C
WITHOUT Patient.personCode

Password [C] Ward
manager

n FULLSELECT HospitalEpisode WHERE
EXISTS TreatmentWard WHERE ward
= n WITHOUT Patient.personCode

Password [C] Hospital
CEO

– FULLSELECT Patient WITHOUT
Patient.personCode

External
authentication
(via Swedbank)

C Patient – FULLSELECT Patient WHERE
personCode = C

Open access – Journalist – FULLSELECT Patient WITHONLY

HospitalEpisode.totalCost WITHOUT
Patient.ALL, TreatmentWard.ALL,
Manipulation.ALL,
OutPatientEpisode.ALL,
AdmissionDiagnosis,
DischargeDiagnosis

Fig. 2.1.2.1 Example of a schema definition table.

The Access rule determines the subset of data which a user can see after a
successful login. The rule is formulated in a simple extension of the Ad-hoc query
language, by preserving its syntax and semantics as far as possible. Each row in the
schema definition table contains just one access rule for the role defined in this row.
The access rule defines a view on the original data model (ontology), specifying
which classes and which attributes the user can use in his queries and which data
instances (data rows) are included in the query result. The access rule essentially
relies on the semistar structure of the data both in syntax and semantics – similar to
the basic query language.

The access rule language contains just one kind of query statements, defined via
the keyword FULLSELECT. The main structure of this statement is similar to the
SELECT statement in the query language. It also contains a class reference and a
WHERE-condition, with literally the same syntax and semantics as in the SELECT.
The resulting view defined by a FULLSELECT statement bears the closest similarity
to the FULLSHOW statement in the query language. Only the class instances which
would be returned by a FULLSHOW with the same class parameter and selection
condition are included in the resulting view (instance tree). It should be noted that
here the selection condition can contain only the parameters C and n from the
corresponding schema definition row in attribute value comparisons (if the parameters
are present).

But FULLSELECT statement has one more part – the WITHOUT clause. This
clause specifies which attributes and classes must be hidden in the resulting view
(instance subtree). The classes and attributes are given as comma-separated list, using
the standard notation (as in the select condition part). If a class is included in the list,
nothing of it can be seen. An attribute inclusion means that only this attribute is
hidden. A specific situation is when a class is not hidden but all its attribute are. This
means that a user can include in the query the instance count for this class, but cannot
see any attribute values or use them for selection. Since this situation is really used, a
shortcut notation with the keyword ALL instead of attribute can be applied. Another
shortcut notation can be used for the case when only few attributes from a large
number of them are not hidden for a class – then the class (with the remaining
attributes) can be placed under the “opposite” keyword WITHONLY (see the last rule
in Fig. 2.1.2.1).

Now some comments on Access rules really used in the example in Fig. 2.1.2.1.
We remind that the data ontology for this example is given in Fig. 2.1.2.2.

The access rule for the Responsible physician role asserts that he can see all the
information on hospital episodes for which he has been responsible – the involved
person code must be his own code supplied at login. He can also see the information
about the patient involved in the episode, except the patient’s person code.

The rule for ward manager can see the episodes where at least one treatment part
was performed in the ward managed by him. The specification of the ward number is
indirect for the user – he enters the appropriate password at login, and it is the
responsibility of the administrator to configure the access table rows so that the
manager has access to the correct ward (the value of n is set correctly). The only
hidden information again is the patient’s person code.

The hospital CEO can see all information in the hospital, except the patient’s
person code.

A patient can see information only about himself. It is specified that his
authentication must be performed via internet banking in the Latvian Swedbank – it is
one of the Latvian banks providing such services for access to personal medical data.
The authentication procedure in the bank returns the relevant person code to the
service requester – the query system. Thus we can guarantee that only the data subtree
for the given patient is visible for him.

Finally, the only example of public access to data – for journalists – specifies in
the access rule, that in fact no attributes are visible in this case. The only visible
attribute is the totalCost for HospitalEpisode class (this attribute is in the list under the
WITHONLY keyword). All attributes of other classes are hidden via the ALL
construct, the classes AdmissionDiagnosis and DischargeDiagnosis are hidden
completely. Thus a journalist can see how many patients have been treated in the
hospital (count them), count the episodes and see e.g., the sum of total costs.

These are more or less typical examples of sensitive medical data hiding, but
much more complicated situation could also be described by the proposed approach.
Thus a fine-grained access control to data can be defined in a relatively simple way.

Patient
personCode :String
name :String
surname :String
gender :{male, female}
birthDate :Date
familyDoctor :CPhysician

Manipulation
manipul :CManipulation
startingTime :DateTime
endingTime :DateTime

OutpatientEpisode
visitDate :Date
visitDuration :Duration
visitCost :Decimal
physician :CPhysician

CManipulation
code :String
name :String
cost :Decimal

CDiagnosis
code :String
name :String

CPhysician
personCode :String
name :String
surnama :String

AdmissionDiagnosis
admDiagnosis :CDiagnosis
admNo :Integer

DischargeDiagnosis
disDiagnosis :CDiagnosis
disNo :Integer

HospitalEpisode
referringPhysician :CPhysician
responsiblePhysician :CPhysician
admissionTime :DateTime
dischargeTime :DateTime
dischargeReason :{healthy, deceased, other}
totalCost :Decimal
caseRecordNo :Integer

OutpatientDiagnosis
outDiagnosis :CDiagnosis
outNo :Integer

TreatmentWard
attendingPhysician :CPhysician
ward :String
arrivalTime :DateTime
transferTime :DateTime
trNo :Integer

**

*

*

* *

*

Fig. 2.1.2.2. The data ontology for the access rule examoples

We provide also a small example in Fig. 2.1.2.3 of a filled Access table for the

schema definition table in Fig. 2.1.2.1. Passwords are fixed for all included users.
However, there may be several rows containing the same password value – a user can

have several roles. The person code parameter value is specified here for the
Responsible physician role where it is mandatory. The authentication for other roles
here is based only on the password for the user. The ward number parameter value is
present for the Ward manager role. Thus the corresponding access rule for all these
roles can be evaluated after the user has successfully logged in – all required
parameter values are present (several access rules must be evaluated if the logged-in
user has several roles). No rows in this table must be created by administrator for
External authentication or Open access case – there are no explicit parameters to be
set in these cases. The example table contains two rows with the password
“DmnPlm03”. The corresponding user has thus the role of both the Responsible
physician and Ward manager, accordingly for him the set of available hospital
episodes (and related class instances) is the union of sets returned by both access
rules. In this case the access rules are fully compatible, but it is the responsibility of
administrator to define the rules so that no possible conflicts can occur for possible
multi-role users (this may happen only in the WITHOUT clauses). The illustrated
feature permits to emulate to a degree the role hierarchy present in RBAC models.

Authentication Person code C Role Role parameter
ArpCrdV01 011040-11111 Responsible Physician –
BrpHrtD02 301191-99999 Responsible Physician –
CmnEmT01 – Ward manager 12
DmnPlm03 – Ward manager 07
DmnPlm03 280296-55555 Responsible Physician –
EceDrBKS0 – Hospital CEO –

Fig. 2.1.2.3 An example of a filled access table

The extension of the current query language support system for access control
seems also to be not very complicated. This is because the implementation in fact is
based on a custom internal storage of the original relational data. This storage can be
extended to include a user view specification facilities by adding the visibility
attribute (relevant for the current query) to internal data classes and attributes.

Experiments on the existing query language implementation system without any
access control have been performed, Fig. 2.1.2.4 shows the distribution of query
answer times in the experiment on real hospital data. The vast majority of all queries
executes in less than 0.3 seconds. Certainly, the inclusion of access rules in the
implementation will slow down the execution. Experiments for the FULLSHOW
option of the query language were also performed, in typical cases the execution time
was less than 0.5 seconds. The actions to be performed for a FULLSHOW query are
very similar to those to be performed for a FULLSELECT access rule evaluation.
Therefore it is reasonable to assume, that the additional delay would also not exceed
0.5 seconds – that would be a completely acceptable performance.

Fig. 2.1.2.4. Query execution times in an experiment

However these assumptions require an experimental check, which is planned for the
next stage of the project. We expect that the delay caused by access control indeed
will be small. It should be noted that in many practical data access systems the
execution slowdown induced by access control is significant for more complicated
access rules, frequently due to the fact that many access rules have to be evaluated to
find out the access rights for a given user. Therefore our approach based on local rules
is quite perspective.

2.1.3. Development of metamodel specialization methods and their
application to building of domain specific language tools for web
environment.
A new metamodeling method – the metamodel specialization method – has been
developed. This method is based on standard UML facilities – class diagrams, class
and association specialization and OCL constraints. An application of metamodel
specialization method to building graphical DSL tools has been developed. This
application results in a new kind of a platform for building DSL tools. In this platform
at first a Universal metamodel for the chosen DSL tool domain (e.g., for graphical
DSL modeling tools) is being created. A Universal engine for this metamodel is also
built. Then any specific DSL tool from the chosen domain can be obtained by the
metamodel specialization method. The proposed new approach differs from the
existing traditional DSL tool building platforms by the feature, that instead of
traditional metamodel instantiation we use the specialization of the universal
metamodel. This permits to build a complete definition of the chosen DSL tool by
adding appropriate OCL constraints. To compare, for traditional metamodel
instantiation applications when building a more complicated DSL tool, as a rule it is
necessary to dive into the internal implementation model of the corresponding
universal engine, thus making the platform usage much more complicated. The main
research results have been published in “A.Kalnins, J.Barzdins, Metamodel
specialization for graphical modeling language support. // In: Proceedings of the
ACM/IEEE 19th International Conference on Model Driven Engineering Languages
and Systems. ACM, pp.103-112, 2016.” – in proceedings of the most prominent
international conference in the area – Models 2016 (with paper acceptance rate
23.7%). Additional results have been published also in “A.Kalnins, J.Barzdins,
Metamodel Specialization for DSL Tool Building. // In: G.Arnicans, V.Arnicane,
J.Borzovs, L.Niedrite (Eds.), Databases and Information Systems, 12th International
Baltic Conference, DB&IS 2016, Riga, Latvia, July 4-6, 2016, Proceedings,
Communications in Computer and Information Science Vol. 615, Springer, pp.68-82,
2016. (indexed by SCOPUS)” and “A.Kalnins, J.Barzdins, Metamodel Specialization
for Diagram Editor Building. // In: G.Arnicans, V.Arnicane, J.Borzovs, L.Niedrite
(Eds.), Frontiers of AI and Applications, Vol. 291, Databases and Information
Systems IX, IOS Press, pp. 87-100, 2016. (to be indexed SCOPUS),
http://ebooks.iospress.com/volumearticle/45702”. A graphical tool building platform
for web environment, to a great degree based on the above-mentioned ideas has been
developed as well and published in “A.Sprogis, ajoo: WEB Based Framework for
Domain Specific Modeling Tools. // In: G.Arnicans, V.Arnicane, J.Borzovs,
L.Niedrite (Eds.), Frontiers of AI and Applications, Vol. 291, Databases and
Information Systems IX, IOS Press, pp. 115-126, 2016. (to be indexed SCOPUS),
http://ebooks.iospress.com/volumearticle/45704”

Fig. 2.1.4.1. Visual smatch with Rules. Left pane shows the document content and
statistics. Right pane shows single sentence gold AMR (left) and silver AMR (right)

along with smatch aligned instance, attribute, relation AMR graph edges. The
bottom pane shows C6.0 classifier generated rules describing the common error

patterns found in the document.

2.1.4. Participation in SemEval-2016 competition with an improved
version of the C6.0 classification algorithm adapted for Abstract
Meaning Representation (AMR) information retrieval

We continued research in information retrieval and semantic parsing with an
application of our earlier Semeval-2015 approach [1] to the formalism of Abstract
Meaning Representation (AMR) [2]. AMR parsing extends the FrameNet micro-
relations concept and attempts to build a semantic graph of all relations within a
sentence.
We managed to achieve excellent AMR parsing accuracy, resulting in the first place
in Task 8 of Semeval-2016 shared task competition [3]. In addition to integration of
the C6.0 0 classifier with the AMR SMATCH [4] scoring tool to improve accuracy of
the CAMR parser [5, 6], we implemented an ensemble with a character level
sequence-to-sequence neural network model for semantic parsing with methods
inspired by neural machine translation.
Exploration of these technologies also resulted in publications about applications of
AMR in text summarization [7] and deep neural networks for Latvian tagging [8], and
the development of three master’s thesis on these technologies [9,10,11].

SMATCH extensions

We describe two extensions1 to the original AMR smatch scoring script. These
extensions do not change the smatch algorithm or scores produced, but they extract
additional statistical information helpful for improving results of any AMR parser, as
will be illustrated further.

Visual Smatch with C6.0 Classifier Rules

The original AMR smatch scoring metric produces as output only three numbers:
precision, recall and F1. When developing an AMR parser, these three numbers alone
do not reveal the actual mistakes in the AMR parser output (we call it silver AMR)
when compared to the human-annotated gold AMR.

The first step in alleviating this problem is visualizing the mappings produced by the
smatch algorithm as part of the scoring process. Figure 1 shows such smatch
alignment visualization where gold and silver AMR graphs are first split into the
edges, which are further aligned through variable mapping. The smatch metric
measures success of such alignment – perfect alignment results in F1 score 100%
while incomplete alignment produces lower scores.

The visualization in Figure 2.1.4.1 is good for manual inspection of incomplete AMR
alignments in individual sentences. But it still is only marginally helpful for AMR
parser debugging, because the data-driven parsers are expected to make occasional
mistakes due to the training data incompleteness rather than due to a bug in the parser.

1 Available at https://github.com/didzis/smatchTools

Telling apart the repetitive parser bugs from the occasional training data
incompleteness induced errors is not easy and to invoke the required statistical
mechanisms we resorted to a rule-based C6.0 classifier [12,1], a modification of the
legacy C4.5 classifier [13]. The classifier is asked to find most common patterns
(rules) leading to some AMR graph edges to appear mostly in the gold, silver, or
matched class after the smatch alignment. The bottom part of Figure 1 illustrates few
such rules found by C6.0. For example, the second rule relates to the visualized
sentence and should be read as “if the instance has type mountainous, then it appears
1 time in the gold graphs and 0 times in the silver graphs of the entire document”.
Similarly the third rule should be read as “word Foreign appears 13 times as :op1 of
name in the gold graphs, but only 1 time in the silver graphs of the entire document” –
such 13 to 1 ratio likely points to some capitalization error in the parser pipeline. The
generated rules can be sorted by their statistical impact score calculated as Laplace
ratio (p+1)/(p+n+2) from the number of correct p and wrong n predictions made by
this rule.

Classifier generated rules were the key instrument we used to create a bug-fixing
wrapper for the CAMR parser, described in section “CAMR Parser with Wrapper”.
We fixed only bugs triggering error-indicating-rules with the impact scores above 0.8,
because Laplace ratio strongly correlates with the smatch score impact of the
particular error.

Smatch Extension for Ensemble Voting

The original smatch algorithm is designed to compare only two AMR documents.
Meanwhile CAMR parser is slightly non-deterministic in the sense that it produces
different AMRs for the same test sentence, if trained repeatedly. Randomly choosing
one of the generated AMRs is a suboptimal strategy. A better strategy is to use an
ensemble voting inspired approach: among all AMRs generated for the given test
sentence, choose the AMR which achieves the highest average pairwise smatch score

with all the other AMRs generated for the same test sentence. Intuitively it means that
among the non-deterministic options we choose the “prevalent” AMR.

Multiple AMRs for the same test sentence can be generated also from different AMR
parsers with substantially different average smatch accuracy. In this case all AMRs
still can participate in the scoring, but weights need to be assigned to ensure that only
AMRs from the high-accuracy parser may win.

AMR Parsers

We applied the smatch extensions described in the previous section to two very
different AMR parsers.

CAMR Parser with Wrapper

We applied the debugging techniques from Section 2.1 to the best available open-
source AMR parser CAMR2. The identified bug-fixes were almost entirely
implemented as a CAMR parser wrapper3 that runs extra pre-processing
(normalization) step on input data and extra post-processing step on output data. Only
minor modifications to CAMR code itself were made4 to improve the performance on
multi-core systems and to fix date normalization problems.

Our CAMR wrapper tries to normalize the input data to the format recognized well by
CAMR and to fix some systematic discrepancies of annotation style between the
actual CAMR output and the expected gold AMRs. The overall gain from our
wrapper is about 4%.

The following normalization actions are taken during pre-processing step, together
accounting for about 2% gain:

1. number normalization from a lexical (e.g. “seventy-eight”), semi-lexical (e.g. “5
million”) or multi-token digital (e.g. “100,000” or “100 000”) format to a single token
digital format (e.g. “100000”);

2. currency normalization from a number (any format mentioned in previous step)
together with a currency symbol (e.g. “$ 100”) to a single token digital number with
the lexical currency name (e.g. “100 dollars”);

3. date normalization from any number and lexical mix to an explicit eight-digit dash
separated format “yyyy-mm-dd”.

Small modifications had to be made to the baseline JAMR (Flanigan et al., 2014)
aligner used by CAMR to reliably recognize the “yyyy-mm-dd” date format and to
correctly align the date tokens to the graph entries (by default JAMR uses “yymmdd”
date format that is ambiguous regarding century and furthermore can be
misinterpreted as a number).

2 https://github.com/Juicechuan/AMRParsing
3 https://github.com/didzis/CAMR/tree/wrapper
4 Modified CAMR at https://github.com/didzis/CAMR

The rules for date normalization were extracted from the training set semi-
automatically using C6.0 classifier by mapping date-entities in the gold AMR graphs
and corresponding fragments in input sentences.

Additionally, all wiki edges were removed from the AMR graphs prior to training,
because CAMR does not handle them well; this step ensures that CAMR is trained
without wiki edges and therefore will not insert any wiki entries in the generated
AMR. Instead, we insert wiki links deterministically during the post-processing step.

During post-processing step the following modifications are applied to the CAMR
parser generated AMR graphs, together accounting for about 2% gain:

1. nationalities are normalized (e.g. “Italian” to “Italy”);

2. some redundant graph leafs not carrying any semantic value are removed (e.g.
“null-edge”);

3. wiki links are inserted deterministically next to “name” edges using gazetteer
extracted from the training data and extended with the complete list of countries and
nationalities (wiki value is selected based on the parent concept and content of the
“name” instance);

About 1% additional gain comes from the observation that CAMR parser suffers from
overfitting: it achieves optimal results when trained for only 2 iterations and with
empty validation set.

Neural AMR Parser

For neural translation based AMR parsing we used simplified AMRs without wiki
links and variables. Prior to deleting variables, AMR graphs were converted into trees
by duplicating the co-referring nodes. Such AMR simplification turned out to be
nearly loss-less, as a simple co-reference resolving script restores the variables with
average F1=0.98 smatch accuracy.

We trained a modified TensorFlow seq2seq neural translation model5 with attention
[14,15,16] to “translate” plain English sentences into simplified AMRs. For the test
sentence in Figure 1 it gives following parsing result:

 (mountain-01
 :ARG1 (country
 :name (name :op1 "Georgia"))

Apart from a missing bracket this is a valid (although slightly incorrect) simplified
AMR. Note that this translation has been learned in “closed task” and “end-to-end”
manner only from the provided AMR training set without any external knowledge
source. This explains overall lower accuracy of the neural AMR parser compared to
CAMR, which uses external knowledge from wide coverage parsing models of
BLLIP6 parser [17]. The neural AMR parser accuracy is close to CAMR accuracy for
short sentences up to 100 characters, but degrades considerably for longer sentences.

5 https://github.com/didzis/tensorflowAMR
6 https://github.com/BLLIP/bllip‐parser

We optimized TensorFlow seq2seq model hyper-parameters within the constraints of
the available GPU memory: 1 layer or 400 neurons, single bucket of size 480, each
input and output character tokenized as a single “word”, vocabulary size 120 (number
of distinct characters), batch size 4, trained for 30 epochs (4 days on TitanX GPU).

Operating seq2seq model on the character-level [18,19,20] rather than standard word-
level improved smatch F1 by notable 7%. Follow-up tests [21] revealed that
character-level translation with attention improves results only if the output is a
syntactic variation of the input (as is the case for AMR parsing), but for e.g. English-
Latvian translation gives inferior results due to attention mechanism failing to
establish character-level mappings between the English and Latvian words.

Results

Table 2.1.4.1 shows smatch scores for
various combinations of parsers and
thus quantifies the contributions of all
methods described in this paper. We
improved upon CAMR rather than
JAMR parser due to better baseline
performance of CAMR, likely due to
its reliance on the wide coverage
BLLIP parser.

The CAMR parser wrapper is the largest contributor to our results. The weighed
ensemble of 3 runs of CAMR+wrapper and 1 run of neural AMR parser) gave an
additional boost to the results. Including the neural AMR parser in the ensemble
doubled the gain – apparently it acted as an efficient tiebreaker between the similar
CAMR+wrapper outputs.

References

1. Guntis Barzdins, Peteris Paikens, Didzis Gosko. Riga: from FrameNet to
Semantic Frames with C6.0 Rules. Proceedings of the 9th International
Workshop on Semantic Evaluation (SemEval 2015), pages 959–963, Denver,
Colorado, June 4-5, 2015, Association for Computational Linguistics.

2. Laura Banarescu, Claire Bonial, Shu Cai, Madalina Georgescu, Kira Griffitt,
Ulf Hermjakob, Kevin Knight, Philipp Koehn, Martha Palmer, and Nathan
Schneider, 2013. Abstract Meaning Representation for Sembanking.
Proceedings of the 7th Linguistic Annotation Workshop and Interoperability
with Discourse, pages 178–186. Association for Computational Linguistics.

3. Guntis Barzdins, Didzis Gosko. RIGA at SemEval-2016 Task 8: Impact of
Smatch Extensions and Character-Level Neural Translation on AMR Parsing
Accuracy. Proceedings of the 10th International Workshop on Semantic
Evaluation (SemEval-2016), Association for Computational Linguistics, pp.
1143-1147. URL https://aclweb.org/anthology/S/S16/S16-1176.pdf

Parser F1 on
LDC2015E86
test set

F1 on the
official
eval set

JAMR (baseline) 0.576
CAMR (baseline) 0.617
CAMR (no valid.set, 2
iter.)

0.630

Neural AMR (word-level) 0.365
Neural AMR (char-level) 0.433 0.376
CAMR+ wrapper 0.667 0.616
Ensemble of
CAMR+ wrapper
and NeuralAMR (char-
level)

0.672 0.620

Table 2.1.4.1: Smatch scores.

4. Shu Cai and Kevin Knight. Smatch: an evaluation metric for semantic feature
structures. In Proceedings of the 51st Annual Meeting of the Association for
Computational Linguistics (Volume 2: Short Papers), 2013, pages 748–752.
Association for Computational Linguistics.

5. Chuan Wang, Nianwen Xue, and Sameer Pradhan. A transition-based
algorithm for AMR parsing. In Proceedings of the 2015 Conference of the
North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, 2015, pages 366–375. Association for
Computational Linguistics.

6. Chuan Wang, Nianwen Xue, and Sameer Pradhan. Boosting Transition-based
AMR Parsing with Refined Actions and Auxiliary Analyzers. In Proceedings
of the 53rd Annual Meeting of the Association for Computational Linguistics
and the 7th International Joint Conference on Natural Language Processing
(Short Papers), 2015, pages 857-862. Association for Computational
Linguistics.

7. N. Gruzitis and G. Barzdins. The role of CNL and AMR in scalable
abstractive summarization for multilingual media monitoring. Controlled
Natural Language, Controlled Natural Language 5th International Workshop,
CNL 2016, Davis, Brian, Pace, Gordon J., Wyner, Adam (Eds.), LNAI,
Volume 9767, pp. 127-130, Springer 2016. doi = "10.1007/978-3-319-41498-
0"

8. Peteris Paikens. Deep Neural Learning Approaches for Latvian Morphological
Tagging. Frontiers in Artificial Intelligence and Applications, Volume 289:
Human Language Technologies – The Baltic Perspective, I. Skadiņa and R.
Rozis (Eds.). IOS Press, 2016, pp 160-166. DOI 10.3233/978-1-61499-701-6-
160 URL http://ebooks.iospress.nl/volumearticle/45531

9. Artūrs Znotiņš. Jēdzientelpas un to pielietojumi. 2016. Master’s thesis,
University of Latvia.

10. Roberts Darģis. Liela apjoma datu kopu klasterēšanas algoritmi. 2016,
Master’s thesis, University of Latvia.

11. Reinholds Pīrāgs. Automātiska teksta konspektēšana izmantojot jēdzientelpu.
2016, Master’s thesis, University of Latvia.

12. Guntis Barzdins, Didzis Gosko, Laura Rituma, and Peteris Paikens. Using
C5.0 and Exhaustive Search for Boosting Frame-Semantic Parsing Accuracy.
In: Proceedings of the 9th Language Resources and Evaluation Conference
(LREC-2014), 2014, pages 4476-4482.

13. Ross J. Quinlan. 1993. C4.5: Programs for Machine Learning. Morgan
Kaufmann Publishers.

14. Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,
Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin,
Sanjay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael

Isard, Rafal Jozefowicz, Yangqing Jia, Lukasz Kaiser, Manjunath Kudlur,
Josh Levenberg, Dan Mané, Mike Schuster, Rajat Monga, Sherry Moore,
Derek Murray, Chris Olah, Jonathon Shlens, Benoit Steiner, Ilya Sutskever,
Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda
Viégas, Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke, Yuan
Yu, and Xiaoqiang Zheng. 2015. TensorFlow: Large-scale machine learning
on heterogeneous systems. Google Research whitepaper. Software available
from tensorflow.org.

15. Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. Sequence to sequence learning
with neural networks. In NIPS, 2014.

16. Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2015. Neural
machine translation by jointly learning to align and translate. In ICLR’2015.

17. Eugene Charniak and Mark Johnson. 2005. Coarse- to-fine n-best parsing and
maxent discriminative reranking. In Proceedings of the 43rd Annual Meet- ing
on Association for Computational Linguistics, ACL ’05, pages 173–180,
Stroudsburg, PA, USA. Association for Computational Linguistics.

18. Andrej Karpathy. The unreasonable effectiveness of recurrent neural
networks. http://karpathy.github.io/2015/05/21/rnn-effectiveness/, 2015.

19. Junyoung Chung, Kyunghyun Cho, Yoshua Bengio. 2016. A Character-Level
Decoder without Explicit Segmentation for Neural Machine Translation. arXiv
preprint arXiv:1603:06147

20. Minh-Thang Luong and Christopher D. Manning. 2016. Achieving Open
Vocabulary Neural Machine Translation with Hybrid Word-Character Models.
arXiv preprint arXiv:1604.00788

21. Guntis Barzdins, Steve Renals and Didzis Gosko. 2016. Character-Level
Neural Translation for Multilingual Media Monitoring in the SUMMA
Project. In: Proceedings of the 10th Language Resources and Evaluation
Conference (LREC-2016)

2.2. Development of approaches, methods and algorithms for
knowledge structure transformations and analysis, and design
methodology of semantic network services

2.2.1. Further improvement of functionality of intelligent structural modeling
tool I4S for multicriterial assessment of importance of elements for knowledge
structures of different types and granularities

2.2.1.1. Description of method for multicriterial assessment of importance of
elements of knowledge structures of different types and granularities

Introduction
The functionality of the tool I4S is extended by applying the results of research done
during this stage of the project. The objective is to investigate whether the importance
of structural elements is invariant if changes of granularity level of knowledge
representation take place.

Let G(V, Q) be a system’s aggregated knowledge structure which is represented by
model of morphological structure (directed graph). Each node corresponds to one
subsystem, for example, a subsystem of lubrication or a subsystem of cooling in case
of internal combustion engine, or a particular study course in case of study
programme.

The initial aggregated model is transformed into a model which has deeper level of
granularity. Transformation is based on graph homomorphism (see Fig. 2.2.1.1).

Fig. 2.2.1.1. Transformation of aggregated initial graph into homomorphic graph with

deeper level of granularity

The result of transformation is a digraph Gg(Vg, Qg) where each node of the initial
graph is replaced by a subset of nodes representing knowledge of deeper granularity.

a1

a3

a2

b1 b2

c1 c2

c3 c4

d1 d2

d3

a

b

c

d

It is worth to point that homomorphism of graphs maintains the basic structural
characteristics (see the bold arcs in Fig. 2.2.1.1).

Fundamental principles for development of method
Analysis of importance of elements of different knowledge structures is rather
widespread task nowadays. As a rule, this task belongs to problems of structural
analysis of graphs because graph theory is the traditional language of structures.
Analysis of related works in this field manifests that especially in case of large
graphs, for example, graphs representing the structure of links between homepages or
the structure of social networks, the importance of elements is assessed only on the
basis of local connectivity, that is, using only in-degrees and out-degrees of nodes, or,
in other words, direct relationships. As a consequence, a significant part of
information is lost. In structural modelling approach [1], [2] the importance of
structural elements (graph nodes) is weighted using three criteria: the local
connectedness (in- and out-degrees of nodes of digraphs), the global connectedness
(the number of paths between inputs and outputs of structure as well as the number of
cycles which contain a node), and the causal connectedness – the number of elements
in the reachability components of nodes which represent the consequences caused if
some characteristics of nodes are missing.

The abovementioned criteria are used for ranking each structural element (node of
digraph).

The value of the first parameter p1(xi) of each node xi is computed using the following
equation:

 p1(xi) = deg−(xi) + deg+(xi) (1)

where deg−(xi) and deg+(xi) are in-degree and out-degree, correspondingly.

All nodes are ranked in accordance with the rule: the greater is the value of p1(xi), the
higher rank (place) R1 has the node, that is, the node (nodes) with maximum value of
p1(xi) takes the first place (is ranked as the first).

The value of the second parameter p2(xi) is computed using the following equation:

 ∑∑∑
∈= =

+=
ri Cx

r

p

i

q

j
iji CPxp

1 1

2)((2)

where Pij is a path between input i and output j containing the node xi, and Cr is a
cycle containing the node xi.
The principle of ordering of nodes is the same as for parameter p1(xi), and the node
with the maximum value of p2(xi) has the highest rank R2.

The value of the third parameter p3(xi) is computed using the following equation:

 p3(xi) = |ReC(xi)| (3)

where ReC(xi) is the reachability component of node xi, and |ReC(xi)| denotes the
number of its nodes (the selected node and all its descendants).

The principle of ordering of nodes in accordance with p3(xi) is the same as for p1(xi)
and p2(xi), that is, the node with the maximum value of p3(xi) has the highest rank R3.

The next step is to calculate the sum of ranks for each node xi:

 RΣ(xi) = R1(xi) + R2(xi) + R3(xi) . (4)

In essence, the RΣ(xi) is the sum of places taken by the node xi according to parameter
values p1(xi), p2(xi), and p3(xi). That is the reason why the total rank Rtotal(xi) of the
node xi is obtained following the principle that the less is the value of RΣ(xi), the
higher is Rtotal(xi).

The final step which is needed to compute the importance of structural element (node)
xi is usage of the following equation:

max

total)(1
1)(

R
xR

xSI i
i

−
+= (5)

where SI(xi) is the structural importance of the node xi, Rtotal(xi) is the total rank of the
node xi and Rmax is the maximum value of Rtotal in the given graph.

Description of method for evaluation of importance of elements of knowledge
structures at deeper level of granularity
The developed method is modification of the method described in the previous
section. The modified method is appropriate for evaluation of importance of elements
of knowledge structures which represent systems at a deeper level of granularity. In
general, when more knowledge about the system is acquired, it is possible to
transform the aggregated model into hierarchically ordered models by replacing a
node at the previous hierarchical level with a subset of interrelated nodes at the next
hierarchical level. The method will be described using only two models of
morphological structure represented by a digraph G(V, Q), which is called an
aggregated model, and by a digraph Gg(Vg, Qg), which is a model representing the
system at deeper level of granularity (see Fig. 2.2.1.1).

The developed method consists of five stages:

Stage 1. For each node xi of the graph G(V, Q) compute the values of parameters p1,
p2, and p3, determine the ranks R1, R2, R3, RΣ, and Rtotal according to equations
(1–4). Use Rtotal to compute the structural importance (SI) of each element of
aggregated structure according to equation (5).

Stage 2. For each node of the graph Gg(Vg, Qg), compute all values which are listed in
Stage 1.

Stage 3. Define the mapping of each node of graph G(V, Q) into a set of nodes of
graph Gg(Vg, Qg) using the notions of boundary and interior [1] of each corresponding
subset of nodes.

Stage 4. Sum up values of SI of nodes which belong to each particular subset of nodes
and divide it by the number of nodes in the subset.

As a result, the values of SI characterize the importance of subset of nodes of a
knowledge structure representing a system at a deeper level of granularity. It is
straightforward that the values of importance of subsets of nodes found at this stage
differ from the values of importance of nodes of aggregated knowledge structure. At
the same time it is worth to point that the relative ordering is the same due to the fact
of homomorphism of digraphs G(V, Q) and Gg(Vg, Qg).

Stage 5. If more detailed analysis is needed, the importance of nodes within each of
subsets may be carried out using computational operations described at Stage 1.

Description of algorithm

In the developed algorithm, in fact, few additional steps are added in comparison with
the algorithm implemented in the tool I4S.

Algorithm:

1. Using the tool I4S compute the values of parameters p1, p2, and p3, determine
the ranks R1, R2, R3, RΣ, and Rtotal according to equations
(1–4). Use Rtotal to compute the structural importance of each element of
aggregated knowledge structure (a digraph G(V, Q)) according to equation (5).

2. Using the tool I4S compute the same values for each element of knowledge
structure at deeper level of granularity (a digraph Gg(Vg, Qg)).

3. Define the mapping for each node xi � V into a set of nodes of digraph
Gg(Vg, Qg). Let denote such set as Si(xj), j = 1, …, m.

4. Compute the importance of each subset of nodes, that is, find

∑
=

=
m

j i

j
S n

xSI
SI i

1 ||
)(

 (6)

where |ni| is the number of nodes in the subset Si(xj). The value of SIS
i

corresponds to the importance of subset Si(xj) in the knowledge structure of
deeper granularity.

5. For all subsets Si(xj), where i = 1, …, n; n – the number of nodes of G(V, Q),
repeat the Step 1.

2.2.1.2. Development of formal method for evaluation of knowledge structure
complexity from the systems viewpoint

The research is focused on concept maps as one kind of knowledge structures. The
work extends the approach, the development of which started during the second stage
of the project. The objective is to develop a formal method for evaluation of concept
map complexity. The latter is necessary for more discriminative estimation of task
difficulty and development of more accurate scoring system used in already
developed intelligent concept map-based knowledge assessment system IKAS (an
overview of the system can be found in “Grundspenkis J. Historical Retrospection on
Success and Failures during the Development of Concept Map Based System IKAS.
Proceedings of the 7th International Conference on Concept Mapping, Tallinn,
Estonia, September 5-9, 2016, Vol. 2, pp. 113-119”).
For evaluation of complexity of concept maps, it is proposed to use four aspects
applied for estimation of systems complexity – the number of system’s elements and
relationships between them, the attributes of systems, their elements, and
relationships, and the organizational degree of systems. During the current stage of
research, the correspondence of complexity criteria between systems and concept
maps is defined more precisely and the set of criteria is expanded. For estimation of
concept map complexity for attribute graphs, a new formula is given. A modified
equation is proposed to evaluate the organizational degree of a concept map by
calculation of the complexity of structure of the concept map. New criteria, namely,
the degree of centralization of structure and the relative weights of hierarchy levels
are introduced, and corresponding equations are proposed. Besides, two novel
methods are developed, namely, ordering of concept maps according to their
complexity and determination of structural importance of concepts are worked out
and validated for two kinds of incoming trees. More information on achieved results
may be found in “Grundspenkis J. Towards the Formal Method for Evaluation of

Concept Map Complexity from the Systems Viewpoint. Databases and Information
Systems IX, G. Arnicans et al. (Eds.), Frontiers in Artificial Intelligence and
Applications, Vol. 291. IOS Press, 2016, pp. 341-354”.
2.2.1.3. Assessment of element importance in knowledge structures of different
types and granularity using various criteria

During this stage the research defined in the title of this subsection has been started.
The task is to verify the hypothesis given by some researchers [3], [4] that ranks of
elements are the same regardless of changes of lengths of outgoing paths from nodes
of digraphs. Moreover, the hypothesis declares that there is no need to analyse
outgoing paths with length greater than 4. Testing of this hypothesis is done using the
developed repository of knowledge structure models. First results obtained from
testing of very small number (only 10) of knowledge structures contradict the
abovementioned hypothesis, showing that ranks of elements change significantly if
paths of length 3 are counted comparing with results when paths of length 4 are
considered. It is foreseen to continue this direction of research during the next stage of
the project.

2.2.1.4. Possibilities to combine different knowledge structures used in
distributed artificial intelligence

The objective of this research is to develop formal algorithms for effective mutual
transformation of different knowledge schemes. This work is planned during the next
stage of the research.

Introduction
In distributed artificial intelligence systems many different knowledge representation
schemes can be used. It is well known that there are four knowledge representation
schemes (based on logic, production rules, network, and structured ones) [5]. In
literature devoted to artificial intelligence rather frequently there is a statement that
for experienced expert it is easy to transform one knowledge representation scheme
into another. It seems to be true if only logical schemes and production rules are
considered. The problems arise when mutual transformations between all schemes are
needed. Especially it is the case with network and structured schemes, which are the
focus of research at the current stage.

Semantic networks
Semantic networks are one of declarative knowledge representation schemes. It is a
graph which nodes represent facts, while the edges show the relationships between
displayed facts. Semantic network edges are labeled and oriented what makes it easy
to understand and define the relationships between the facts and objects. The semantic
networks demonstrate concepts and links between them. The nodes of semantic
network can represent not only the facts, but also objects, their properties, actions, and
events – actually a semantic network can represent knowledge about any realities in
the world. The semantic network can represent only first order logics; therefore it is
unable to represent logical operations like conjunction, negation, disjunction [6].

Edges of the semantic network are able to represent different types of relations [6]:

• class–superclass – Is a relation;
• instance–class – Is an instance of relation;
• part–whole or Is a part of relation;
• object–its attribute – Property (has) relation;

• attribute–its value – Value relation;
• different linguistic relations.

Last group of relations shows that the semantic networks have not strictly defined
formal semantics. Relation Is is related to the inheritance in semantic networks, which
facilitates network design process, avoiding overloading the network with
unnecessary relationships and helping to structure network, because this way all the
objects of a particular class inherit its superclass information. Inheritance mechanism
is related to one of the semantic network problems – concurrent inheritance from
several classes – because class and its superclass may have conflicting values of the
same property.

Below is an example (Fig. 2.2.1.2) of a semantic network that represents the fragment
of dog show exhibition knowledge. Accountant Alina has a dog which breed is wire-
haired dachshund and name Freud. It comes from Bergberry kennel, owned by Ieva.
Freud is 4 years old; he performs in the champion class, because in the past he has
already got Latvian Junior Champion title. From the same kennel comes another wire-
haired dachshund from open class – Faust, who is Freud's brother, who is six years
old, but his owner is a dentist Daiga.

Fig. 2.2.1.2. Semantic network – dog show

Conceptual graphs
Another knowledge representation scheme, without the strictly formalized semantics
are conceptual graphs. Conceptual graph is finite and bipartite connected graph,
which represents one statement. In the bipartite graph all the nodes are divided into
two distinct and non-empty sets and there are edges only between the nodes of
different sets. In the context of conceptual graph, these two sets of nodes are the set of
concepts and set of conceptual relations, so then edges are allowed only from the
concept to the relation or in the opposite direction – from the relation to the concept.
Relations are represented as the nodes, so that edges of the conceptual graph are not
labeled, moreover conceptual relation can include several edges, the number of which
is called the valence of relationship, so the conceptual graph allows you to represent

not only the first-order logics (first-order logics – one outgoing edge, second-order
logics – one incoming and one outgoing edges, the third-order logics – two incoming
and one outgoing). In each case outgoing edge can be only one. Conceptual graphs
allow you to define the signature of the relationship, which defines restrictions on the
types that can be connected by a given relation [7].

The concept node may contain information about the concept type and particular
instance of this type (if necessary also quantifier can be included). If it is not possible
to specify a particular instance, then the node can store only type name or unnamed
individuals, whose names can be obtained by inference mechanism.

Conceptual graphs like semantic networks allow realizing the inheritance. It can be
achieved by defining the type hierarchy and graph restriction and matching
operations. In general, knowledge base based on the conceptual graphs, consists of set
of graphs, the concept type hierarchy and catalog of instances [7].

Conceptual graphs allow to represent the conjunctions, disjunction and negation
operations. To realize the negation operation it is necessary to group the conceptual
graph, to which will be applied the negation, by the expression node. Then No
conceptual relation is applied to this expression node. The conjunction is realized by
grouping several conceptual graphs in the expression node. Disjunction is represented
with the conjunction and negation.

To create a conceptual graph, based on previously developed semantic network, the
network has to be divided into separate statements. To do this, it is necessary to
analyze network nodes and associated edges, starting with the nodes without the
outgoing edges.

First of all it is necessary to define referents and their classes (node, which follows
after the Is instance of relation), because the concepts in the conceptual graphs contain
both the instance and its type. It is one of the problems of semantic network
transformation to the conceptual graph, because in the semantic network individuals
can formally exist without their types. For example, in the semantic network that was
described above nodes Alina, Daiga and Ieva have not any related types, but despite
this, they are supposed to be individuals, not the attributes or any other class. In order
to avoid such a situation, it would be better to define type for each individual in the
semantic network.

It has been already described that some difficulties can arise while trying to represent
inheritance from several types at the same time in the semantic networks. But
formally semantic networks allow to represent such situations when one object is an
instance of more than one class. For example, Freud is the instance of a wirehaired
dachshund class and the instance of show participant class. So it is not clear which
class should be shown in a concept node (Fig. 2.2.1.3).

It would be logical to choose a class depending on the context. For example, while
dealing with a statement Freud is 4 years old, it is more important to know that Freud
is a dachshund than the fact that he is a participant in a dog show. On the other hand,

Wirehaired
dachshund: Freud

Participant of the
dog show: Freud

Fig. 2.2.1.3. Choosing type of object

if the statement is Freud’s class is a champion class (Fig. 2.2.1.4) then it would be
logical to note that Freud is a participant in a dog show. Computers, unlike people,
have difficulties with analyzing the context of a statement.

To perform conceptual graph actions, a type hierarchy must be defined first. That’s
why after finding a semantic network node that corresponds to a certain class (a node
that follows an is an instance of relation), it is necessary to check whether or not it is
followed by an is a relation. For example, previously developed semantic network’s
nodes Freud and Wirehaired dachshund are connected with an is an instance of
relation, while the node Wirehaired dachshund is followed by an is a relation
connecting this node to a Dog class. Type hierarchy Wirehaired dachshund <= Dog
can be derived from his chain.

Another big problem is to distinguish objects from relations and properties. Defining
which node from a semantic graph becomes a separate concept, and which – a
concept type, is another problem. If a node in a semantic network is preceded by a
property relation, it will be combined with a node preceded with a value relation.

For example, it would be reasonable to transform a statement Wirehaired dachshund
Freud is 4 years old into the conceptual graph shown on the Fig. 2.2.1.5.

Slightly more complicated situation occurs while trying to depict the information
about the kennel and its name. Similarly to the previous example it can be done in a
way shown in a Fig. 2.2.1.6. But in this case the kennel is perceived as a class, and not
as a specific kennel. So, it would be logical always to combine a name with a kennel,
thus getting the specific object.

Problems arise while transforming this conceptual graph back into a semantic
network, because the result of this transformation (shown in a Fig. 2.2.1.7) does not
correspond to the original semantic network and causes multiple inaccuracies.

Bergberry Kennel
is an instance of

Wirehaired
dachshund: Freud

Age: 4 years old
attribute

Kennel Name: Bergberry
attribute

Kennel:
Bergberry

Fig. 2.2.1.4. Choosing type of object

Fig. 2.2.1.5. Property and its value in a conceptual graph

Fig. 2.2.1.6. Name attribute in a conceptual graph

Fig. 2.2.1.7. Instance in a conceptual graph

Participant of the
dog show: Freud

Class: Champion
attribute

Adding the information about Freud being born in a kennel complicates the problem
further, because it is not clear that Freud was born specifically in the Bergberry
kennel (Fig. 2.2.1.8).

While transforming conceptual graphs into semantic networks, one should take into
account that only first-order relations can be represented in a semantic network, but
logical operations, like conjunction, disjunction and negation, can’t be represented in
a semantic network at all. To represent a negation in a semantic network, negation
should be added to the relation itself. For example, in order to transform the graph
shown in a picture below, negation should be added to the owns relation, making it a
doesn’t own relation (Fig. 2.2.1.9).

While transforming semantic network to conceptual graph, negation should be
excluded from negative relation and moved to a separate node. This means that
linguistic analysis should be performed – does not has to be separated from verb.

Frames
Frames are static data structure that allows to represent typical knowledge about the
object in a structured way. Frames have slots that contain data about the properties of
frame and its relations to other frames. Inheritance is widely used in frames – it is
realized by the frames of three types – class frame, subclass frame and instance
frames. It is possible to define relationships of three different types between frames –
generalization (Is instance of relation), aggregation (A part of relation) and the
association. Frames can be expanded by adding facets, which allow you to define
additional constraints (value type restriction or other restrictions) and adding the
actions that can be performed. Actions can be divided into procedures and methods.
Methods are actions that are automatically triggered by accessing frame and its slots
[8].

Performing transformation of semantic network to the system of frames should start
with defining classes and subclasses of an object (by identifying nodes that follow
after relation Is instance of) and checking Is relation after the node that was found.
This way it is possible to define classes and subclasses, each of them is then

Bergberry Kennel Freud
Was born is an instance of

Wirehaired
dachshund:

Fausts
to own agent

object LV champion
title

Expression node

No

Fig. 2.2.1.8. Inaccuracies that have occured

Fig. 2.2.1.9. Negation in a conceptual graph

implemented by separate frame. Then the Property nodes of the corresponding class
node have to be analyzed and added as frame slots (Fig. 2.2.1.10).

Class: Dog

Wirehaired dachshund

Class: Dog
Body length long

After classes and subclasses with their properties were identified, instance frames and
their slots have to be defined. Then similar to the case of classes, properties have to be
added as slots (Fig. 2.2.1.11).

Freud
Class: Wirehaired

dachshund

Body length long
Age 4 years
Class champion

After properties are added, other relations of an instance have to be analyzed. Some of
them can be added to an instance frame as slots, too; for example, the owner of dog
and kennel (Fig. 2.2.1.12).

Freud

Class: Wirehaired

dachshund

Body length long
Age 4 years
Class champion
Was born kennel
Owner Alīna

Kennel

Name Bergberry
Owner Ieva

Alīna

Occupation accountant

In case of using frames there is also a problem if one object belongs to several classes
at the same time.

References

1. Grundspenkis J. Structural Modelling of Complex Technical Systems in
Conditions of Incomplete Information: A Review. In: Modern Aspects of
Management Science, No 1. Riga, Latvia, 1997, pp. 111-135.

2. Grundspenkis J. Reasoning Supported by Structural Modelling. Intelligent
Design, Intelligent Manufacturing and Intelligent Management. K. Wang and
H. Pranevicius (Eds.), Lecture notes of the Nordic-Baltic Summer School on

Fig. 2.2.1.10. Class and subclass frame

Fig. 2.2.1.11. Instance frame

Fig. 2.2.1.12. Slots examples

Applications of AI to Production Engineering. Kaunas University of
Technology Press, Technologija, 1999, pp. 57-100.

3. Nechiporenko V.I. Strukturnyj Analiz Sistem (in Russian). Moscow,
Sovetskoe radio, 1977.

4. Nikolayev V.I., Bruk V.M. Sistemotehnika: Metodi i Prilozeniya (in Russian).
Masinostroyeniye, Leningrad, 1985.

5. Luger G.F. Artificial Intelligence: Structures and Strategies for Complex
Problem Solving. Addison Wesley, 2005.

6. John F. Sowa. Semantic Networks. Stuart C Shapiro (Ed.), Encyclopedia of
Artificial Intelligence. Wiley, 1992.

7. Chein M., Mugnier M.-L. Graph-based Knowledge Representation:
Computational Foundations of Conceptual Graphs. Springer, 2009.

8. Marvin Minsky. A Framework for Representing Knowledge. MIT-AI
Laboratory Memo 306, June 1974.

2.2.2. Development, merging and application of knowledge structure models in
ontology- and rule-based decision making

During accomplishment of this research activity several studies have been done on
knowledge structure models and their applications in the decision making, including
affective tutoring systems, intelligent agents and multi-agent systems, as well as
development of a repository for knowledge structure models that stores developed
knowledge structures.

Development and analysis of different types of systems is essential to the creation of
classification of knowledge structures. Qualitatively described and represented
knowledge structure can be considered as a system model. System model describes
the system from different viewpoints, allows understand and analyse its structure,
functioning and behaviour, as well as to assess and carry out appropriate solutions
regarding real-world system and its operations. One of the approaches which supports
domain based, partly formal system representation is Structural Modelling [1].
Structural modelling studies the topology of models and defines a continuous and
unified view on the research system where element and model visualization is
designed taking into account such aspects as structure, functions, and behaviour, as
well as deep causal knowledge and modelling purpose.

2.2.2.1. Building a repository of knowledge structures (models of systems)

Within the current step of the task a repository of knowledge structures – models was
built. This repository was made using developed intelligent system I4S (also IFS)
which supports knowledge acquisition and representation based on SM approach. The
functionality of I4S ensures that knowledge structures (models) of systems can be
changed, shared and reused. A repository serves as a central part where these models
(knowledge structures) of different types of systems are stored (see Fig. 2.2.2.1).

Fig. 2.2.2.1. A repository of knowledge structures (models) of different types
of systems

The input of knowledge structures is made according to the developed methodology
[2]. On the bases of once entered knowledge there is a possibility to generate different
models in I4S (there is a submodule “Models”) [3], which is important for qualitative
and quantitative analysis of systems. Working with the system I4S, as during the input
of knowledge as also during analysis of systems, expert’s main task is to create a
formal representation of the research system, including aspects that are relevant to
structural modelling [1]: what system is viewed, what objects and relationships exist
in the system, what are the properties and behaviour of the system and objects. Any
system and its parts has a definite structure, that characterise its composition
[4, Ch. 1]. Parts of the system may be in different sizes and can be either
homogeneous – those who do not have different characteristics and heterogeneous –
with different elements and/or structural properties. The structure is the relationship
between the parts that together with identity of parts form a whole, taking into
account the fact that between parts exists a certain order. Interactions and
relationships between parts of the system are as important as the parts themselves.
Interactions form a certain organization in the system. The organization is defined as a
system feature, which is characterized by a structure that is purposefully created to
perform certain functionality. It is worth to note that the structure of the system
remains relatively stable over time; here is meant the structure that complies with the
system organization. If the organization of a system stays invariant, while the
structure of the system changes, then system remains the same and doesn’t lose its
identity. The organization of a system defines it as a unity in any space, while its
structure constitutes it as a concrete entity in the space of its components.

System I4S can acquire and represent expert’s knowledge about research system in
various ways [2]:

• describing system’s objects, relationships between objects, properties (e.g.
colour, weight) and alternatives;

• describing relationships in more detailed way – representing flow name and
type, functions name, behaviour, possible flow combinations, as well as flow
properties (for example, type of matter: oil);

• specifying parameters and relationships between them for each behaviour
state;

• creating and representing system’s object, function and property hierarchies;
• transforming the knowledge acquired from expert in structure models.

System I4S allows create connections only between objects that are represented in a
hierarchy, therefore all system parts must be described. Investigating systems in
conditions of incomplete information, their models must meet following criteria [5]:

• It must be possible to create model, using only available knowledge;
• Model must describe all system, regardless of element heterogeneity;
• Model must be easy adjustable, when the system is changed;
• Model must “work” in conditions of incomplete information and must give

new knowledge about the research system.

Structural modelling approach implemented in I4S allows structure model
construction, considering before mentioned criteria.

On the basis of acquired and described knowledge about a system the functionality of
software ensures a convenient way for transition between different type of models,
which, in turn, is essential for carrying out appropriate research models and deep
causal analysis. The example of knowledge representation view of the system under
investigation is given in Fig. 2.2.2.2.

Fig. 2.2.2.2. Example of knowledge acquisition and representation in I4S

System I4S allows manipulate with represented knowledge about objects,
relationships, properties and behaviour. Expert can add not only object description,
but also to change and delete it, and also to reorganize system objects. Reorganization
here means that a chosen system object (also with all descendants) can be relocated in
other place within the hierarchy, changing objects predecessor. It is relevant not only
to change system representation in the case when system changes, but also if an
expert has created inaccurate system representation. System I4S performs
representation of various hierarchies: system’s parts, functions and properties. System
creates object and function hierarchies also in corresponding models. When in the
system I4S the description of research system is created and are represented all
systems parts, relationships, behaviour and parameters as well as logical operators,
then the construction of different structure models in different decomposition levels is
performed [2].

There are about 20 knowledge structures from different domains (for example
Evaluation of FET projects, Viable systems model, Control System for Winch
Handling System, Language interconnection, Roads connection of Latvia, Bayesian
network example etc.) entered in a repository. At present, a repository of models of
systems is built taking into account their affiliation to technical or non-technical
systems (see Fig. 2.2.2.1). Such a division of systems under investigation is not
enough, namely, in the future another more detailed classification of systems must be
developed and more knowledge structures must be added. As well as a qualitative and
quantitative analysis of models stored in a repository must be made and appropriate
functionality for I4S software must be added.

2.2.2.2. Emotion modelling for simulation of affective student–tutor interaction

Besides the creation of a repository, a research related to the development of
knowledge structure for the dynamic adaptation of emotion-based tutoring process
started on the previous stage of the project has been continued [6]. Various knowledge
structures, e.g. knowledge structure for the representation of pedagogical knowledge
and for the communication of agent’s emotional state are developed during this
research stage. Both mentioned knowledge structures are also included as part of the
above mentioned repository (see Fig. 2.2.2.3).

Fig. 2.2.2.3. Structure models representing an agent’s emotional state and pedagogical

knowledge

Furthermore, studies related to the implementation of dynamic adaptation of tutoring
process are carried out by adopting a multi-agent system as a basic approach to enable
a simulation of affective student-tutor interaction. The architecture of a pedagogical
agent is designed supporting not only the usage of pedagogical knowledge (e.g.,
tutoring strategies including game-based learning) but also emotion ontology, which
includes both descriptions of emotions and their possible causes. The communication
of multi-agent system is enabled by using fragments of previously researched
ontologies. The knowledge of personality is included in the model by transforming it

into core mood thus ensuring communication of emotional state among agents.
Furthermore, the reasoning mechanism of a pedagogical agent utilizes knowledge
about student’s personality that serves for various purposes, e.g., for the prediction of
student’s emotions and behaviour, for the generation of appropriate tutor’s personality
and teaching actions, as well as for the selection of suitable teaching methods.
Described results are represented in a journal paper “Petrovica S., Pudane M. Emotion
Modeling for Simulation of Affective Student-Tutor Interaction: Personality
Matching. International Journal of Education and Information Technologies, Vol. 10,
2016, pp. 159-167”. Future work is related to the further development of student and
tutor emotion models to include several functions, such as emotion generation and
simulation of an emotional behaviour.

2.2.2.3. Development of ontologies- and rules-based multi-agent system
management tool

During the previous stages of the project, research on knowledge structures used in
intelligent agents was started. The mechanism for introduction of knowledge structure
changes was developed. This included the general conceptual mechanism for
introduction of changes, the ontology for experimental needs and the mechanism for
adaptation of existing rules to new/incomplete data. For achievement of research
goals and providing experiments the prototype of room cleaning multi-robot system
simulator which supports manual introduction of changes of knowledge structure into
ontologies and rule bases of agents that simulate robots was developed during the first
stage. Fig. 2.2.2.4 shows the way how the agents are modelling cleaning robots.

Fig. 2.2.2.4. The use of the multi-agent system to simulate a cleaning
multi-robot system

Detailed architecture of the knowledge representation and learning framework were
developed during the stage 2 of the project. The rule based learning approach was
added to the previously created ontology based knowledge structure. A concept of a
multi-agent system management tool was introduced in the system architecture. As a
result, the system is composed of the following main components: a cloud that
implements the knowledge base and machine learning algorithms, manager agent with
its interfaces and the set of agents (see Fig. 2.2.2.5). The knowledge base and machine
learning cloud are centralised for all agents to enable synchronous update of
knowledge that is used by all agents. The cloud based knowledge base consists of the
ontology, rule base and environment model. The latter two are based on the class
hierarchies defined in the ontology, i.e., they are using classes from these hierarchies
to define their instances and additional knowledge about them in the form of rules.

Classes
Rules

Environment

Knowledge base

Contractor agents

User
(Knowledge engineer)

Manager agent

Uses to define semantics of communications

Contract Net
Configuration
Feedback

Class hierarchies

Environment
model

Rule baseIs based on

Is based on Example set
Based on feedback

User
(MAS operator)

Ontology Learning Tool
Updates

Learning
mechanism

MAS Management Tool

Uses

Feedback

Are based on

Configuration
Feedback

Situation reports

...

Fig. 2.2.2.5. The architecture of the cloud based multi-agent system

The relationships among the mentioned higher level components are the following.
The agents use the knowledge base for their priority based decision making. They also
use the ontology to define the semantics of the communications according to the
JADE Ontology support. Finally, agents collect the example set for the learning
mechanism. The manager agent updates the knowledge base and ensures the
fulfilment of user’s requests by contracting the appropriate agent to do the particular
task.

The multi-agent system (MAS) consists of two types of agents. The manager agent
represents the user and acts on behalf of him/her to find the most appropriate
performer of each action. A Contract Net protocol is used to allocate tasks to the most
appropriate agent. Another type of agents is the ones doing actual actions in the
environment. These agents are named contractor agents. The set of these agents is
heterogeneous in the sense that each agent can have different capabilities. Each agent
knows its capabilities and can use the common knowledge base to calculate its
appropriateness to the particular action and to choose the particular method to execute
it. In the particular cleaning scenario these are the agents that represent the cleaning
robots.

The manager agent’s purpose is to serve as an interface between the system and its
users and to organise the work of the multi-agent system. It is an agent with two user
interfaces, namely the user interface for knowledge engineer and the user interface for
the operator of the system.

As can be seen in the architecture, the developed management tool is complementary
to the previously developed ontology learning tool. The ontology learning tool is used
by the systems developer during the design phase of the system and later on to update
the knowledge structures whenever necessary. The ontology learning tool has the
following functionality:

• Defining the class hierarchies to be included in the ontology;
• Defining the environment model consisting of the class instances;
• Specifying the user defined rules.

The user interface of the tool is given in Fig. 2.2.2.6.

Fig. 2.2.2.6. Ontology learning tool

During the third stage of the project the conceptual framework has been implemented
into ontologies and rules based multi-agent system management tool. The rule based
priority mechanism is implemented into the tool and is applied to the task allocation
in multi-robot systems (currently working in a simulated environment). Description of
the developed tool has been published in a journal paper “Lavendelis E. A Cloud
Based Knowledge Structure Update and Machine Learning Framework for
Heterogeneous Multi-Agent Systems. International Journal of Artificial Intelligence,
Vol. 14 (2), October 2016. CESER Publishing, pp. 157-170 (indexed in Scopus,
SNIP: 1.159)”.

Currently the developed management tool has the following functionality:

• Choice of ontology and knowledge base as well as loading the environment.
These things can be read from files that have been created by the
OntologyLearning tool. The ontology is stored as java classes while the
knowledge base and the environment is stored in a knowledge base file. The
area of the user interface denoted by 1 in Fig. 2.2.2.7 is used for this purpose.

• Configuration of the system by defining the agents and their capabilities in
terms of cleaning methods. The area of the user interface denoted with 2 in
Fig. 2.2.2.7 is used for the configuration purposes.

• After defining the configuration of the system, the agents are started and the
area denoted by 3 in Fig. 2.2.2.7 becomes active and shows the state of each
part of the environment.

• Additionally the area denoted by 4 in Fig. 2.2.2.7 becomes active and provides
the log information and enables the user to give the feedback about the
cleaning results.

Fig. 2.2.2.7. User interface of the ontology and rules based multi-agent

management tool

A scenario of a typical experiment in the simulated environment is the following:
• The user loads the ontology, knowledge base and environment details by

specifying the path to the ontology and knowledge base file and clicks Load.
• The user chooses the configuration of the system by specifying the agents and

the cleaning methods that they are capable to execute. After the configuration
is complete the user clicks “Start/Stop Agents”. The simulation starts at that
moment. A screenshot of the tool just after the start of the simulation is given
in Fig. 2.2.2.8.

• The manager agent autonomously checks the environment and in case some
area becomes dirty, it finds the most appropriate agent to clean it. A screenshot
with the result of the first cleaning task is given in Fig. 2.2.2.9, while a
screenshot with more cleaning results is given in Fig. 2.2.2.10. The simulation
is speeded up to shorten the time needed for simulations.

The Fig. 2.2.2.10 shows a situation when rule base is not perfect and the chosen
capabilities are far from the optimal ones, for example, high pressure washing is bad
for the Living room that has Laminate as a floor cover. Of course this particular
situation can be solved by adding one particular rule. Still it does not solve the general
problem. To get a general solution, future research during the next stage of the project
is to implement the machine learning mechanism to enable the system to learn from
the experience. Implementation of such a mechanism will make the tool fully
functional and enable fully autonomous updates in multi-agent systems. The approach
and tool after finalizing the implementation will give a significant contribution to the
research of autonomous machines (for example, robots), by enabling autonomous
changes in knowledge structures and knowledge itself after the system is deployed.

Lack of such mechanisms is one of the obstacles that currently hinders the
development of fully autonomous robotic systems.

Fig. 2.2.2.8. Multi-agent system management tool just after the start of the simulation

Fig. 2.2.2.9. The first cleaning results

Fig. 2.2.2.10. Further cleaning results

References

1. Grundspenkis J. Reasoning Supported by Structural Modelling. Intelligent
Design, Intelligent Manufacturing and Intelligent Management. Lecturer notes
of the Nordic-Baltic Summer School on Applications of AI to Production
Engineering, K.Wang and H.Pranevicius (Eds.). Kaunas University of
Technology Press, Technologija, 1999, pp. 57-100.

2. Zeltmate I. Development of intelligent system for structural modelling of
complex systems. Doctoral Thesis, Riga Technical University, 2012.

3. IFS User Manual v.1.0.
4. Young B.J., Booch G., Conallen J., Engel M.W., Houston K.A., Maksimchuk

R.A. Object-Oriented Analysis and Design with Applications, 3rd Edition.
Addison-Wesley, 2007.

5. Grundspenkis J. Structural Modelling of Complex Technical Systems in
Conditions of Incomplete Information: A Review. In: Modern Aspects of
Management Science, No 1. Riga, Latvia, 1997, pp. 111-135.

6. Petrovica S., Pudane M. Simulation of Affective Student–Tutor Interaction for
Affective Tutoring Systems: Design of Knowledge Structure. International
Journal of Education and Learning Systems, 2016, No.1, pp. 99-108.

2.2.3. Detailed development of the approach for aligning requirements/systems
engineering based knowledge flows (structures)/information artifacts

The proposed approach for aligning requirements engineering based knowledge flows
(structures)/information artifacts is based on the continuous requirements/systems
engineering framework FREEDOM that was developed in the previous phase of the
project. In this phase, the details of the framework, which influence the
knowledge/information flow in the framework, were addressed. The results are
described in the following publications:

• Businska L., Kirikova M. The Goal-Based Selection of the Business Process
Modeling Language. 9th IFIP WG 8.1 Working Conference, PoEM 2016,
Skövde, Sweden, November 8-10, 2016, Vol. 267 of the series Lecture Notes
in Business Information Processing. Springer, pp. 307-316.

• Kirikova M., Matulevičius R., Sandkuhl K. The Enterprise Model Frame for
Supporting Security Requirement Elicitation from Business Processes.
Proceedings of 12th International Baltic Conference, DB&IS 2016, Riga,
Latvia, July 4-6, 2016, Communications in Computer and Information
Science, Vol. 615. Springer, pp. 229-241.

• Kirikova M., Matulevičius R., Sandkuhl K. Application of the Enterprise
Model Frame for Security Requirements and Control Identification. Databases
and Information Systems IX, G. Arnicans et al. (Eds.), 12th International
Baltic Conference, DB&IS 2016, Riga, Latvia, July 4-6, 2016. IOS Press, pp.
129-142.

• Kozlovs D., Kirikova M. Auditing Security of Information Flows. Proceedings
Perspectives in Business Informatics Research. 15th International Conference,
BIR 2016, Prague, Czech Republic, September 15–16, 2016, Vol. 261 of the
series Lecture Notes in Business Information Processing. Springer, pp.204-
219.

In parallel the FREEDOM framework was compared to other frameworks developed
for similar purposes; and the variants of the FREEDOM framework were identified
and illustrated to demonstrate its flexibility. More details can be found in “Kirikova
M. Towards Framing the Continuous Information Systems Engineering. Joint
Proceedings of the BIR 2016 Workshops and Doctoral Consortium, co-located with
15th International Conference on Perspectives in Business Informatics Research (BIR
2016), September 14-16, 2016, Prague, Czech Republic, B. Johansson and F.
Vencovský (Eds.), Managed Complexity. CEUR-WS.org, Vol. 1684”.

Aligning requirements/systems engineering based knowledge flows (structures)/
information artifacts requires addressing the existing gap between business process
models and states of business objects. Therefore an approach was developed for
explicit definition of states of business objects, automatic generation of conceivable
state space at a process model design-time, automatic generation of lawful state space,
and compliance checking at a process run-time, which is described in “Peņicina L.
Controlling Business Object States in Business Process Models to Support
Compliance. PoEM 2016, Doctoral Consortium, Skövde, Sweden, November 8-10,
2016 (will be published in Ceur-ws.org)”.

In this regard time aspects play an important role; therefore, in this phase of the
project, also time aspects were analyzed with respect to the FREEDOM framework.
Below the results of the analysis are briefly described.

2.2.3.1. Time dimension with respect to the FREEDOM framework

FREEDOM framework [1] describes two states “R” and “F”. “R” – reality, artifacts
that represent present condition or state, also called as-is situation. “F” – future
representation, in this representation there are artifacts that describes system’s future:
e.g., models, states, designs, predictive analysis results. Similarity in R and F
representations is noticed, as many enterprise architecture frameworks describes as-is
state as present and to-be state as future representation of an enterprise and project
enterprise development as transition from present as-is state to to-be future state [2].
The FREEDOM framework exposes a similar approach.

During E1 – Requirements Engineering function system requirements are formulated
in cooperation with stakeholders. At the end of E1 stage – the list of requirements is
obtained (includes also time restrictions on system implementation or system life
cycle [3]). E2 – Fulfillment Engineering defines detailed project plan. We have to
consider detailed and deep planning of jobs and resources during E2, also new
technical details that comes up can change requirements. This means that the list of
requirements can change very frequently and the date of transition from E1 to E2 is
difficult to define. After the list of requirements and project plan is finalized, the
agreement between developer and customer is to be signed. Formally, agreement’s
date is the end of E2 at a particular iteration and the start of D function. D – Design
and implementation function is usually managed based on project plan. Project plan
includes time and other resource restrictions for all stakeholders. The end of D stage
can be strictly defined, as acceptance act is signed. The date of the act formally is the
end of D stage and start of O function/stage. O – Operations function may have
specific time restrictions, but those depend on the particular enterprise and systems. If
system life cycle is defined, the end of O stage ere is known. Also there is difficulty to
define M – Management stage time frames. FREEDOM permits to shows O and M
stages sequentially as well as to consider them in parallel.

The example of different time aspects is shown in Fig. 2.2.3.1.

Fu
nk

ci
ja

F
(N
āk

ot
ne

s)

re
pr

ez
en

tā
ci

ja
R

 (t
ek

oš
ā)

re

pr
ez

en
tā

ci
ja

Fig. 2.2.3.1. Time issues in FREEDOM framework (an example)

Taking in to consideration above mentioned time aspects that above were discussed
for the base representation of FREEDOM framework, it is clear that the complexity
and variability of time aspects for variations of the FREEDOM framework will
require a separate time model for each variant of the framework.

The above discussed developments mainly address internal artefacts of the
FREEDOM framework. However the framework prescribes also consideration of the
external artefacts. Therefore additionally an approach on the identification of system's
external knowledge structures/information artefacts and the changes of their state has
been proposed. The approach is rooted in the analysis and the representation of the
structure and content of the documents capturing valuable knowledge for the
enterprises. Below, the brief description of the approach is given.

2.2.3.2. An approach on the identification of system’s external knowledge
structures/information artefacts and the changes of their state.

Growing amount of information and its diversity pose challenges to process it. Both in
the World Wide Web and in specific data bases inside the organizations there exist
information sources containing valuable and reusable information. Nowadays there
are trends to use this existing information in automated information processing
solutions, for example, in gathering of Web content, recommender systems, data
mining and other solutions [4]. Information processing usually consists of activities,
which can be classified in four main groups, namely, information acquisition,
analysis, decision making and decision implementation [5]. The development of
automated information processing solutions fosters the execution of these activities.

There are several groups of information artefacts that are produced within the
enterprise or outside the enterprise and are relevant for the enterprise. For example,
course descriptions in the educational institutions, job descriptions in industrial
organizations.

The research in the project was done in the context of education demand and offer
information monitoring, which is well known by the researchers, therefore relevant
information sources and knowledge structures were identified in this context.

Education demand and offer information monitoring is perceived as service system
[6]. Service systems are focused on the interaction between people, technology, and
other internal and external service systems, as well as on the exchange of shared
information between the stakeholders of service system to achieve common goal. In
this regard, for identification of relevant external information, any enterprise actually
can be considered as a service system.

An important issue of analysis of external information is identification of information
sources. Information source is regarded here as anything what gives information about
anything. It is assumed that information source is constituted by document or the set
of documents. Document is the representation of something. For example, curriculum
gives information about courses included, thus we say that curriculum is constituted
by the set of courses; whereas the course description is the document representing, for
example, obtainable knowledge. Similarly we can say about job advertisements of
some company, they are the edu d/o information source constituted by the set of job
advertisements (i.e., documents).

In the context of monitoring of education demand and offer the following sources
were identified: in the job market – job advertisements, job descriptions, surveys; in
the education institutions – study and certification course description; in governmental
institutions, international institutions and from the industry associations – profession
standards, curriculum recommendations, professional bodies of knowledge. For
business companies there will other relevant sources, such as industrial standards,

legal information, as well as information in social networks. Regardless of the sources
the way how the sources are handled is similar; therefore, further the illustrations will
be given in the context of education demand and offer monitoring.

To be able to process the external information it is necessary to identify knowledge
structures that give an opportunity to establish the conceptual base (as simple as the
list of concepts or more complex knowledge structure). For instance, the following
knowledge structures for systemizing knowledge, skills, and competences were
identified in the educational demand and offer monitoring context:

• Taxonomy provided by Association for Computing Machinery (ACM) [7];
• European Dictionary of Skills and Competencies (DISCO) [8], [9];
• European e-Competence framework (e-CF) [10];
• Skills Framework for Information Age (SFIA) [11];
• Classification of European Skills, Competences, Qualifications and Occupations

(ESCO) [12].

From the listed knowledge structures, ACM, e-CF and SFIA are specific for the field
of computer science and information technology, whereas DISCO besides this field
includes also the skills of other fields (e.g., business administration). General purpose
knowledge structure with respect to knowledge and competences is ESCO.

Knowledge structures can serve as a “unified language” [13], which is understood by
stakeholders. It is important in external information monitoring to ensure unified and
structured way for the representation and processing of the information sources.

In information sources not only their amount of information can be huge, but it can
also continuously change (e.g., changing course descriptions, changing standards
etc.), it can be distributed across different locations (e.g., World Wide Web,
databases, printed documents) and can be in different formats (various unstructured,
semi-structured or structured textual documents) [14]. Also the presence of service
systems and the necessity to gain mutual benefit raises the challenge to process the
information that is mutually important for all involved parties.

The proposed approach is based on the following results obtained in information
demand and offer information monitoring context:

• Identified general approach on change management of the information
artefacts (documents);

• Identified different types of changes in information artefacts (documents).

Further the proposed approach on the state identification of system's external
knowledge structures/information artefacts is described in detail. It is rooted in the
analysis and structured representation of information artefact (i.e., document)
structure and its content.

The main steps of the approach are the following:

1. Knowledge structure based document transformation ;
2. Identification of changes;
3. Trigger based notification.

By performing these steps, it is possible to capture the information artefact state, how
it has changed, how it has changed in comparison with mapped documents and ensure
the facilities of the notification in order to perform further actions, e.g., start

discussion with participants within service system, reflect changes in the operation of
organization. Table 2.2.3.1 briefly describes the steps of the approach.

Table 2.2.3.1. Brief description of the steps of the approach
Knowledge structure

based document
transformation

Identification of changes Trigger based
notification

Knowledge structure based
document transformation
is used to ease the
mapping of different
documents and to foster
the understanding among
involved parties.

Changes can be of different types, namely:
• Structure changes
• Extracted concept changes
• Correspondence (mapping) changes

between different information
artefacts:

o Mapping removed
o New unmapped elements
o New mapped elements

Trigger based
notification about
the 3 different
types of changes

It is important to ensure continuous information artefact change management process
to be able to perform informed activities within the service system. General change
management process is presented in Fig. 2.2.3.2.

Fig. 2.2.3.2. Information artifact change management process

Two types of change detection can be distinguished, namely, general change detection
and content change detection. General change detection renews the version of source
document in the repository or in the database and also identifies if previous document
version differs from the current one. In case, the changes are not identified, next steps
should not be performed, because it is known that the document has not been
changed. Content change detection includes the detection of changes in the concepts
identified in the document (e.g., new concepts identified, concept deleted etc.).

To keep a reusable history of considered artefacts, the following general information
artefact change management process is proposed:

1. Information source is selected.
2. Based on the available knowledge structures, relevant documents are retrieved.
3. Retrieved documents are checked against the document version already

available in the system. If the changes are detected, then the new unstructured
document version is saved. After the saving next action can be performed. If no
changes are detected, then the next document is taken for processing and change
identification.

4. By using knowledge structures, the relevant concepts are identified in the
document. As a result, an annotated document is created. Annotations are the
concepts identified in the document.

5. Detected concept changes in the document are saved in database. Several
changes of documents are aggregated and special notification triggers may send
notifications to involved parties to take further actions with respect to the
identified changes.

Taking into consideration that large amount of requirements are elicited and analyzed
during information systems development process and that those requirements can be
processed, stored, and managed in various tools and communicated via various
channels; the appropriate requirement distribution approach was developed. This
approach is the basis for seeing the constraints on the flexibility of FREEDOM
framework. Below the approach is briefly described.

2.2.3.3. Requirements distribution approach

Large amount of requirements are elicited and analyzed during Information Systems
development process. And those requirements can be processed, stored and managed
in various tools, for example MS Word or MS Excel, e-mails, JIRA system etc. and
communicated in various channels. The more tools and channels we have the more
effort we need for requirements management to keep all requirement versions up to
date. In a situation when we have many tools, channels and involved persons in IS
development and even in all IS life cycle, some issues of requirements versions and
availability may arise.

Requirement distribution approach describes key principles for effective requirements
distribution during the IS life cycle.

Requirements are information about desired IS or expected results. Depending on
selected approaches (Requirements Engineering approach, Project Management,
Development etc.), various ways for requirements documentation and analysis can be
used, for example – user stories, notes, specifications, models, tasks in development
systems etc. If we take a situation when many sides are involved in IS development
like client’s project manager and analysts, development team (project manager,

analysts, testers, programmers etc.) and other stakeholders and stakeholder groups,
then a question arises – how to manage requirements in a way, that allows all
involved persons to have access to up to date requirements.

The following requirements are considered as important for requirement distribution:

• Requirements distribution approach must be effective – this approach should
provide requirements to right person in the right time and the right place;

• Approach must be sustainable – with possibility to provide access to
requirements in future.

As we know from BABOK 3 [15] – Requirement Engineering includes activities like
Requirements elicitation and collaboration, Strategy Analysis, Analysis planning and
monitoring, Requirement Analysis and Design, Solution Evaluation and Requirements
Life Cycle Management. All these activities can be involved in each IS life cycle
phases. And during the IS life cycle phases information and knowledge about IS is
critical for effective work results.

The following factors have been taken into consideration to identify challenges in
requirements distribution in the context of continuous requirements/system
engineering:

• The IS life cycle contains several projects (more than one), like the
development of new IS module;

• The Following groups are involved in IS development:
o Clients project team (project manager, analysts, testers);
o Development project team (project manager, analysts, testers,

developers and other specialists);
o Client (like a person or group of persons);
o Stakeholders;
o Third party – quality control, auditors etc.

• More than one tool is used (e.g., MS Word/Excel, e-mail, JIRA, notes and
other tools) for capturing requirements and more than one channel is used to
communicate requirements.

Aforementioned facts are very important and in the same time, if we use more than
two tools (MS Word, JIRA, e-mail, Share point and other tools), it can be difficult to
make it work. The possible solutions in this situation can be:

• Analyst or other specialist repeats each modification in requirements in each
tool – but this is time consuming;

• We can develop integration platforms that make online changes automatically,
if we make changes in one of used tools – this approach probably will be
expensive.

As in above cases, most probably, the effectiveness and efficiency of requirements
distribution will be low; we need to find other alternatives.

From this point we can point out difficulties or challenges in requirement distribution:

• Optional amount of time resources for requirement management and
distribution – more tools, more operations to keep up to date requirements in
all tools;

• Best alternative for requirement management tool – more involved groups and
persons, more rules and principles for requirement management tools

selection. It is important to take into account specifics or each group and
possibilities. There will be groups of limited financial resources that will not
acquire expensive tools;

• Other challenges.

Many approaches and possibilities in knowledge management and distribution are
described in literature. For example requirement distribution can be equivalent to
knowledge management, because it includes a whole set of methods for knowledge
distribution [16]. There are some assumptions about recommendation tools and their
effort in requirement engineering and distribution [17].

The proposed approach describes the key principle that can help make requirements
distribution more effective and even make requirements management simpler and
more effective and save resources. Approaches testing will be held during the next
phase of the project.

The basic idea of the approach is – by reducing requirements management tools and
channels we can reduce resources for requirement management and simplify
communication management.

This simple idea can be shown as Architecture of Requirement distribution approach
(see Fig. 2.2.3.3).

Tool to document and
manage requirements

In
st
an
ce

B

In
st
an
ce

A

Clients project
team

Client

Stakeholders

Developers project
team

Third parties etc.

Requirements versioning

Support for IS
development process

Requirements detalization
and traceability

and other functionality

Communication

Channel A Channel B

Communication

Channel A Channel B

Fo
r R

eq
ui
re
m
en

ts

do
ku
m
en

ta
tio

n,
 a
na
ly
si
s,

cu
m
m
un

ic
at
io
n,
 r
ec
on

ci
al
ito

n,

tr
ac
ea
bi
lit
y
et
c.

Fig. 2.2.3.3. Architecture of requirements distributions approach

Requirements distribution approach recommends:

• To agree on requirement management tool at the start of the project (better in
the first project of IS development);

• In tools selection take into account the following criteria:
o Possibilities to share information and requirements and to work with

requirements in online mode;
o Possibilities to document requirements in textual format, models etc.

and to manage requirements traceability;
o Possibilities to link related information like testing scenarios, testing

tasks, testing results etc.;
o Possibilities to make reports and analyze information in various

dimensions;
o Possibilities to use results of one project in another project;
o The tool can be used as a communication channel.

• To keep to following conditions:
o The tool needs to be used to document requirements and these

requirements are kept up to date;
o All involved groups use the tool;
o Historical information is available, etc.

Mostly IS development projects involve more than one project team and involved
person. If it is so, there are challenges in requirement management and distribution
because in most cases each project team uses their own tool and communication
channel. Proposed approach points out the need for small amount of requirement
management tools and sets rules for effective requirements management and
communication.

To establish the background for unification of abovementioned aspects of artifact
alignment in the next phase of the project, the possibility to use graph algorithms in
information flow analysis was analyzed.

2.2.3.4. Use of graph algorithms for analysis of information artefact flow

Today through the information systems (IS), which operate in a specific enterprise
can flow very large amount of information. Also, the rapid development of IT in
recent years has created some specific problems, such as data storage and processing.
Therefore, it is necessary the methods that can handle the flow of information [18],
[19].

The information flow concept appeared because amount and speed of transmitted
information every time rises up. Information flow has to comprise the minimum
amount of information that is necessary for company’s functionality.

Information flow description using graph is one of the most popular methods that
exist today. Using this approach we can graphically represent the management system
and the information flow functionality [20].

To establish the graph suitable for information flow analysis the following approach is
proposed:

1. Build the BPMN model (s) for the specific scope of enterprise activities;
2. Cross-check the built models for completeness using ArchiMate language;
3. Transfer the developed models into the information flow graph.

The information flow graph is constructed using the elements depicted in Fig. 2.2.3.4.

Fig. 2.2.3.4. AC – device, LS –server, EP –Software, D – human, A – data base,
M1 – Temporal data storage; ID – electronic information, PD – verbal information,

L – paper based information.

The example of the application of the approach is illustrated here with the automatic
control signing case. In Fig. 2.2.3.5 the source BPMN and ArchiMate models are
shown, the obtained information flow graph that is applicable for the use of graph
algorithms is illustrated in Fig. 2.2.3.6. The abbreviations used in Fig. 2.2.3.6 are
described in Table 2.2.3.2. The arrows in the graph reflected in Fig. 2.2.3.6 show the
direction of the information flow.

Fig. 2.2.3.5. BPMN and ArchiMate models of company employer automatic contract

signing case

Fig. 2.2.3.6. Company employer automatic contract signing information flow graph

Table 2.2.3.2. Designation of the abbreviations used in the graph
Abbreviation Transcript

D Employer
PMLP Migration service employer
IR Citizens register
VP Company head director
CAD Work resources department employer
A Archive
IEMDB Interior ministry database
POL Policeman
A Doctor
H Horizon application
IRD Citizens register employer
PD Person data

Z1, Z2 Certificate
AP Examination
SD Non conviction data
L Contract
DS Employer list

The colors of the graph reflected in the Fig. 2.2.3.6 show that the graph algorithms for
information flow analysis have to distinguish between different types of information
and different types of information handlers. Modification of existing algorithms for
graph analysis (such as identification of cut-sets of the graphs, etc.) is intended to be
performed in the next phase of the project.

References

1. Kirikova M. Continuous requirements engineering in the FREEDOM
framework: A position paper. CEUR Workshop Proc., vol. 1564, 2016.

2. Kirikova M., Penicina L., Gaidukovs A. Ontology based linkage between
enterprise architecture, processes, and time. Commun. Comput. Inf. Sci., vol.
539, pp. 382-391, 2015.

3. Finke A. Requirements inheritance in continuous requirements engineering: A
position paper. CEUR Workshop Proc., vol. 1564, 2016.

4. Rubin S.H., Chen S.-C. The 2013 IEEE International conference on
information reuse and integration: Forward. In 2013 IEEE 14th International
Conference on Information Reuse & Integration (IRI), 2013, pp. xii–xii.

5. Parasuraman R., Sheridan T.B., Wickens C.D. A model for types and levels of
human interaction with automation. IEEE transactions on systems, man, and
cybernetics. Part A, Systems and humans: a publication of the IEEE Systems,
Man, and Cybernetics Society, vol. 30, no. 3, pp. 286-297, May 2000.

6. Spohrer J., Maglio P., Bailey J., Gruhl D. Steps Toward a Science of Service
Systems. Computer, no. January, pp. 71-77, 2007.

7. Association for Computing Machinery (ACM) taxonomy, 2012. [Online].
Available: http://www.acm.org/about/class/2012.

8. 3s Unternehmensberatung. European Dictionary of Skills and Competencies -
DISCO II, 2012. [Online]. Available: http://disco-tools.eu/.

9. Müller-Riedlhuber H. The European dictionary of skills and competences
(DISCO): An example of usage scenarios for ontologie, in Proceedings of I-
KNOW 2009 - 9th International Conference on Knowledge Management and
Knowledge Technologies and Proceedings of I-SEMANTICS 2009 – 5th
International Conference on Semantic Systems, 2009, pp. 467-479.

10. European Committee for Standardization, European e-Competence
Framework 2.0, 2010. [Online]. Available: http://ecompetences.eu/.

11. SFIA FOUNDATION, Framework referece SFIA version 5, 2011. [Online].
Available: http://www.sfia.org.uk/v5/en/.

12. Vrang M., Papantoniou A., Pauwels E., Fannes P., Vandensteen D.,
De Smedt J. ESCO: Boosting Job Matching in Europe with Semantic.
Computer, vol. 47, no. 10, pp. 57-64, 2014.

13. Asgrahani M., Shankararaman V. Skills frameworks: A tool for reform in
Information Technology higher education. In 2014 9th International
Conference on Computer Science & Education, 2014, pp. 81-88.

14. Rudzajs P. and Kirikova M. IT Knowledge Requirements Identification In
Organizational Networks�: Cooperation Between Industrial Organizations
And Universities. In Information Systems Development: Asian Expierences,

W. W. Song, S. Xu, C. Wan, Y. Zhong, W. Wojtkowski, G. Wojtkowski, and
H. Linger, Eds. Springer New York, 2011, pp. 187-199.

15. International Institute of Business Analysis. A Guide to the Business Analysis
Body of Knowledge v3, 2015.

16. Mahdi Owayid A., Alrawi K., Shaalan K. Chapter 45. Effectiveness of
Information Systems Infrastructure and Team Learning in Integration
Knowledge Management and e-Learing Technologies. The 8th International
Conference on Knowledge Management in Organizations, 2014.

17. Maalej W., Kumar Thurimella A. Towards a Research Agenda for
Recommendation Systems in Requirements Engineering. 2009 Second
International Workshop on Managing Requirements Knowledge (MaRK'09),
2010.

18. Hammer C., Snelting G. Flow-sensitive, context-sensitive, and object-sensitive
information flow control based on program dependence graphs. International
Journal of Information Security, December 2009, Volume 8, Issue 6, pp. 399-
422.

19. Durugbo C., Tiwari A., Alcock J.R. A review of information flow
diagrammatic models for product–service systems. The International Journal
of Advanced Manufacturing Technology, February 2011, Volume 52, Issue 9-
12, pp. 1193-1208.

20. ISO/IEC 2382-1:1993, Information technology – Vocabulary – Part 1:
Fundamental terms. 01.01.01: knowledge concerning objects, such as facts,
events, things, processes, or ideas, including concepts that within a certain
context have a particular meaning.

2.2.4. Development and integration of different services in Web portal using
open Semantic Web resources and enhancement of software configuration
management methods

The EAF methodology, which is based on MDA approach and is aimed at software
configuration management and automation of IT operations for software practical
application, has been further improved. A survey has been implemented to determine
the main continuous processes that ICT companies are going to automate, the current
automation level of these processes, and the main challenges in the automation field.
The survey had 42 respondents from more than 35 ICT companies in Latvia. The
results of survey will be used for further enhancing the EAF. More details can be
found in scientific papers “Bartusevics A. Automation of Continuous Services: What
Companies of Latvia says about it? In: Procedia Computer Science 2016, ICTE 2016,
December (accepted)” and “Novickis L., Mitasiunas A., Ponomarenko V. Information
Technology Transfer Model as a Bridge between Science and Business Sector. In:
Procedia Computer Science 2016, ICTE 2016, December (accepted)”.

The semantic services development and integration methodology utilizes model-
driven approach to design, develop and maintain services with reusability in mind.
One of the key elements of the approach – the Reusable Functions Library – was
developed. This library makes it possible to reuse implemented automation functions
in different projects and different workflows. Development of the library is described
in “Bartusevics A., Novickis L., Lesovskis A. An Approach for Development of
Reusable Function Library for Automation of Continuous Processes. In: Procedia
Computer Science 2016, ICTE 2016, December (accepted)”.

The methodology for systematic development of RESTful Semantic Web services
using SADI (Semantic Automated Discovery and Integration) framework has been
further developed. The methodology was used to develop a set of Semantic Web
services that are used in eLOGMAR logistic portal (available at
http://www.elogmar.eu). The validation was implemented in collaboration with
industrial partner – company Logitrans Consult. For scientific results related to this
direction of research, see the following publications: “Grocevs A., Prokofjeva N. The
Capabilities of Automated Functional Testing of Programming Assignments. In:
Procedia – Social and Behavioral Sciences, Volume 228, 2016, pp. 457-461”,
“Jurenoks A., Novickis L. Adaptive Method for Assessing the Life Expectancy of a
Wireless Sensor Network in Smart Environments Applications. In: Proceedings of
14th IFAC International Conference on Programmable Devices and Embedded
Systems, PDES 2016. Brno University of Technology: 2016, pp. 93-98”, and
“Jurenoks A., Novickis L. Simulation-Based Experimental Research of Wireless
Sensor Network Life Expectancy Reconfiguration Method in Transport Logistics
Area. In: 2nd International Conference on Systems Informatics, Modelling and
Simulation, Riga: 2016, pp. 135-140”.

2.2.4.1. Validation of algorithms for services integration in Web portal

Service development and integration methodology utilizes model-driven approach to
design, develop and maintain services with reusability in mind. One of the key
elements of the approach is the development of library of reusable functions. This
library makes it possible to reuse implemented automation functions in the different

projects and in the different workflows. The approach for development of RFL
(Reusable Functions Library) contains three mandatory conditions for developers:

• All automation functions should be developed and stored in the scripts by
particular pre-defined template. The template contains special requirements
for naming conventions and formatting to be able determine where is
description of current function, input and output parameters etc.

• All functions should be parameterized and independent on each other.
Revisions should be passed to function as an input parameter.

• Each function should have at least one output parameter – function exit code.
The value could be 0 (in case of success) and 1 (in case of fail).

The functions that fulfill these conditions are called Actions. The main attributes of an
Action are the input parameters, unique name and output parameters. Two or more
Actions could create a workflow called ActionFlow. Each Action in an ActionFlow
takes into account the output parameters of the previous Actions in this particular
ActionFlow. The architecture of the approach consists of two main parts
(Fig. 2.2.4.1).

The first part is a physical directory in the particular file system that stores the source
codes of reusable automation functions. The second part is an RFL manager that
parses and transforms functions to make them reusable, manageable and human
readable.

Semantic web services which semantically annotate information received from
traditional web services that are included in eLOGMAR portal (www.elogmar.eu)
have been developed at the 2nd project’s period. Processed information is related to
the logistics domain (available routes and their types, cargo expenses etc.) [1].

The process of validation of services integration into Elogmar Web portal has been
performed in close cooperation with industrial enterprises Logitrans Consult Ltd. and
UIFA. Some results of Web portal validation are presented in Fig. 2.2.4.2 and
Fig. 2.2.4.3. The results of users’ feedback show that in general the quality of portal
functionality as well as user interface has been estimated positively.

Semantic web technologies have been integrated also into model driven software
configuration management approach [2]. It makes easier to implement repeated usage
and integration of Software Configuration Management data.

The process of validation of has been performed in close cooperation with industrial
enterprises, including Tieto Latvia.

Besides that, the approach has been tested in the set of experiments in five different
software development projects. In all of the mentioned projects the experiments
revolved around the continuous software delivery to a test environment.

Results of experiments shows, that until Reusable Function Library is empty,
implementation of automation by new approach is not rational – it takes quite more
time. Most of this time is required for development and testing of reusable functions
by pre-defined template. However, after Reusable Function Library contains all
necessary Functions, implementation of automation by new approach helps to save up
time (“project 2” – 36 hours, “project 3” – 52 hours, “project 4” – 33 hours,
“project 5” – 44 hours). To increase benefits from provided approach, it is necessary
to find how to fulfil the Library as soon as possible. It will help to reduce
implementation time at “project 1”.

Reusable Function Library

ExampleLinux

Win

Ruby

version_control_utility.sh

Functions:
Merge
Commit

Software
Developer

Reusable Function Manager
Reusable
Function

Templates

Linux

Win

Ruby

Use

Develop

Function Parser

Use

Use

Structure of Functions

Generate

Example
Linux

Subversion
Merge

Commit

Action (Function Call)
==
Input parameter1: <value>
Input parameter2: <value>
….
Output parameter:
Commit <Parameter1> <Parameter2> .. Output parameter
==

Provide

Implemented automation source code

Scripts

Could be inserted into ActionFlow

Call

Fig. 2.2.4.1. Approach for development and use reusable function library

Fig. 2.2.4.2. Estimation of Web portal functionality

Fig. 2.2.4.3. Estimation of user interface

SCM ontology written in OWL language is used to semantically annotate
configuration files. This semantic data (metadata) can be used to as input data for the
Semantic Web services and also can be used to in the tasks like data integration,
searching, and indexing.

2.2.4.2. Further adaptation of open Semantic Web resources (Linked Open Data,
Open Calais, DB Pedia etc.) for integration of different services in Web portal

This section presents a methodology for the systematic development of RESTful
Semantic Web services using SADI (Semantic Automated Discovery and Integration)
framework. SADI framework was chosen after an exhaustive analysis of the available
solution for Semantic Web service development.

This methodology consists of the following four general activities:

1. Define and host domain and service (input and output classes) ontologies;
2. Generate a service skeleton (i.e., Java class stub and other supporting files)

using a SADI service generator;
3. Add business logic (Java classes and necessary supporting files) to the service
4. Build service and deploy produced WAR (Web application ARchive) file to an

application server.

Ontology definition aims at defining concepts and associated relationships that
describe the knowledge domain to which the service under development belongs.
Since domain ontologies describe well-established knowledge domains, they are
usually stable and can be used in the development of a number of services pertaining
to the domain. During this activity, we initially search for a suitable ontology.
However, in case no suitable domain ontology is identified, appropriate domain
ontology is developed, preferably by reusing the existing ontologies.

The methodology was used to develop a set of Semantic Web services that are used in
eLOGMAR logistic portal (available at http://www.elogmar.eu). The services use
modified logistic domain ontologies LogiCO and LogiServ from TNO.nl
(Fig. 2.2.4.4).

The services receive logistic-related data from usual Web services available at
eLOGMAR portal and return semantically annotated data. Output of one service can
be used as input in the other SADI services (within and outside of eLOGMAR portal)
– this potentially allows chaining of multiple SADI services.

Fig. 2.2.4.4. Schematic depiction of LogiServ and LogiCO ontologies

Another developed Web service is a normal RESTful service that is used to submit
textual data it receives as input to OpenCalais platform that processes the text using
NLP (Natural Language Processing) methods and returns RDF formatted results
identifying entities, facts and events within the text. This service’s output can be used
as input for other SADI services.
2.2.4.3. Research on enhancing and application of reusable source code base in
Latvian IT companies. Enhancing of EAF methods

Current version of EAF approach contains the following parts:

• Platform Independent Environment Meta-model – a modelling language
implemented on MetaCase platform. The scope of this language is modelling
of continuous process, which should be automated later.

• Reusable Function Library – a repository with scripts and tools for automation
of particular parts of continuous processes. Really, this is a physical directory
in file system where reusable scripts and tools are stored under version control.

• Automation Framework – a tool, which connects together a model of
continuous process, designed using Platform Independent Environment Meta-
model and Reusable Function Library. The framework analyses and parses
Reusable Function Library. During the next step, other parsers get structure of
Platform Independent Environment Model. When all parsing are completed,
user is able to choose particular automation solutions from library. Finally,
source code for automation of process described in model could be generated
as well representation of automation buttons.

To improve EAF and make it demanded and user-friendly, the survey has been
implemented. The first goal of survey is detection of most popular tools for
automation to detect scripting languages for Reusable Function Library. The second
goal is determining the main continuous processes ICT companies are going to
automate, current automation level of these processes and main challenges in the
automation field. However, the most important question of provided survey is: “Why
continuous processes are not fully automated however automation market has many
modern solutions for automation?” Answer for this question could provide a vision
how to make EAF approach demanded and popular for ICT companies, taking into
account practical need.

The survey has 42 respondents from more than 35 ICT companies of Latvia. 60% of
all respondents are members of ICT companies with 200 and more employees. It
means that survey has opinion of large companies with many different software
development projects and results could be believable, however 42 respondents is not a
big amount for statistical analysis. The Fig. 2.2.4.5 provides overview of popular
scripting languages and technologies using by respondents.

Fig. 2.2.4.5. Scripting languages for automation

The most popular scripting languages are Unix Bash/Shell, Windows Bash, Ruby and
Python. It means that Reusable Function Library could be quite usable if functions for
these scripting languages will be stored.

The next part of survey related to particular continuous processes. We asked to
evaluate automation level for most important continuous processes:

• Bug Tracking – process related to updates of statuses of tickets (For example,
from ‘Ready Solution’ to ‘In Testing’ after new release for test environment);

• Version Control – process related to operations with version control
repositories to prepare baselines for software builds (merge, branch, tag,
commit etc.);

• Software Build – process related to build software from source code;
• Software Deployment – process related to deploy software builds to test and

production environments during new releases;
• Software Delivery – process related to preparing software release for

production environment. This process could include such steps as creation of
installation package, preparing installation guides and release notes, updates of
bug tracking items, generate formal emails and notifications about new release
etc.

To evaluate automation level of mentioned processes, we introduced 4 automation
levels:

• Not automated – process is fully manual and requires human efforts for all
steps of it;

• Partially automated – at least one step of process is automated;
• Fully automated – all steps of process are automated, no human efforts are

required to complete process;
• Will be automated – process is not fully automated but company understands it

and going to automate this process in future.

Evaluations of automation level are provided in Fig. 2.2.4.6.

Fig. 2.2.4.6. Automation of continuous processes evaluated by respondents

After analysing of provided data, some important conclusions have been made:

• Continuous processes like “Software Builds” and “Software Deployment”
have the best automation level compared with other. Only 6% of respondents
still have not automated deployment process and near 16% has not automated
deployment process.

• Bug Tracking has poor automation level; only 16% of respondents think that
bug tracking is fully automated. The most popular bug tracking systems like
JIRA and Redmine provide API interface and could be easily managed from
scripts, however there are so many different build and deployment tools and
we have integration problem: build and deployment tools cannot “tell” to bug
tracking system which tickets should be updated and when.

The general conclusion is that companies know the own software very well and could
automate at least most important steps of build and deployment. However, many
respondents still have not automated such processes like bug tracking, version control
and software delivery.

The next part of survey related to detect challenges in the automation field as well
detects the actual problems. We could try to answer mentioned question “Why
processes still not fully automated, however automation market has such tools like
OpenMake, Serena, Jenkins, Puppet, Chef, Docker etc.”

To understand better actual problems and challenges in the automation field, we have
asked two questions:

• What are actual problems in the automation field and how they could be fixed?
• What is a modern automation solution of second half of 21 century?

Here are some interesting answers from survey:

• “Copying source code and creation of modifications without saving integration
with code base”

• “Changes in one particular module or system in context of different projects
raise merge conflicts and manual merges does not allow to achieve full
automated level”

• “Dependencies from 3-rd party vendors”

• “New tools and approaches related to automation are not trustable and are
risky. Companies going to apply minimal requirements without including
additional financial and human resources”

• “Too many definitions regarding the same things: for example, DevOps,
software configuration management, continuous processes etc. Companies do
not see themselves in the new tools and approaches, they do not see how new
tools could improve existing process and where benefits are”

• “There is no way how to see benefits from new automation solution. For
example, if I will pay something, how much money and resources I will save
up in future”

• “Automation solutions in the future will be reusable and easy integrated with
other solutions/tools. New integrations and components will be easy included
and managed without manual code writing and some additional efforts”

• “There are going to be introduced more abstraction levels”
• “Source code will be generated automatically when machine learning will

achieve new improvement level”
• “People going to improve automation by own trusted tools. They do not like

revolution, they do not like to buy some unknown and not trusted, but they
would like to improve process by reusing existing and trusted tools”

• “Usually companies have many different software development projects for
different customers. They are going to use the same automation solutions in all
projects but they do not like to share automation source code or
implementation for customers or 3-rd party vendors. There is a challenge to
make some automation solution reusable for different projects and customers
without sharing implementation details and without additional requirements
for infrastructure on the customer side”

In addition, we have asked to evaluate mentioned problems in the automation field.
After analysing of this evaluation, we have found that there is no one TOP actual
problem. It means that if some particular problem is actual for one respondent, it is
not actual for other etc. We have summarized all answers and data of particular
survey and designed a vision of modern and demanded automation solution in context
of previously developed EAF approach.

Vision of modern and demanded automation solution based on results of survey
To understand better a vision of automation solution, let us challenges in the
automation field:

• Why continuous processes are not fully automated, however so many
automation tools exist? Because companies love theirs processes. They do not
think that processes could be better and faster and do not see any benefits from
new automation tools. Some error or not automated step of particular process
sometimes is so usual and process owner does not think that it is error or not
automated step, but something “normal and usual”. For example, we can
imagine technical specialist who is responsible to deploy new version of
software to test environment. During each deployment, he copying 1000 files
from workstation to remote server manually using SSH tools. Copying of file
takes 40 minutes every day, because specialist does not use a script what can
do the same by one click. If some other specialist, who can do the same by one
click, will looks for this manual copying, he could tell that process is not
automated and it could be absolutely. However, for technical specialist, who

do this manual copying during last 10 years every day, it is something usual
and normal. He does not see any problems, he could not imagine that process
could be faster and he do not like to study some new automation tools, which
“maybe will improve the process”.

• Let us describe a case when technical specialist knows that his own process
could be better and more automated. It is a good, but how to choose correct
automation solution. Sometimes presentations of new automation tools
contains many definitions instead of demonstration of benefits. In addition,
potential user cannot see how new solution could improve his process.
Presentations of modern automation tools contains many different concepts
like DevOps tools, release management tools, software deployment tools,
configuration management tools etc. For example, I need a tool, which could
prepare build for database delta. How I can search needed tool? I could do it
by keywords like “database delta installation”, “database change migration”,
“DevOps for database deployment”, “continuous integration for database
development” etc. Because no one standard exist for definitions of continuous
processes automation field. It is a reason why sometimes it is a challenge to
find in the huge sea of automation tools only one what actually needed. In
other words, sometimes two companies could do the same thing and could call
this thing differently.

Sometimes modern tools for automation suggest making changes in the usual process.
Changes could be like revolution, for example installation of new unknown tools, buy
new licences, refactoring of software architecture, changing structure of application
and database servers and many other changes. However, this suggestion looks too
risky from company side, because companies like and trust own tools and processes.

They do not like to make huge changes, install unknown tools and especially, spend
resources for such refactoring. Instead of mentioned, they would like to try new
automation solutions without some installations, revolutions etc. They would like to
try some new features free and they would like to have rollback option in case when
new automation solution will not give expected benefits.

Based on mentioned summary, new vision of EAF approach has been designed. The
vision has 3 main concepts and improvement topics. The first concept is “mirror
effect”. The Fig. 2.2.4.7 provides the principles of “mirror effect”.

Fig. 2.2.4.7. Main principles of “mirror effect”

EAF approach should provide a service to create a model of the same process. Model
should takes a meta-data from particular process, for example statistics from bug
tracking system, history of version control repositories, statistics of continuous
integration builds etc. Model should have information about tools, which support
current process, for example JIRA, Subversion, Git, Jenkins, OpenMake Build
Meister etc. The service should draw a model of the same process, which contains the
same workflows and the same tools, so it called “mirror effect”. User of EAF
approach should see identical process but with improved characteristics and

measurements (Fig. 2.2.4.7). To demonstrate benefits of each automated solution, this
solution should be applied for the equivalent process, which contains the same
workflows and tools. If user will see benefits of automation solution, which is applied
for his own process, these automation solution has a good chance to become trusted
and implemented.

The next concept of new vision of EAF approach is the “backup mode” and cloud-
oriented implementation. Cloud oriented implementation means that EAF users could
call particular automation solution or framework from cloud without some additional
installations on local infrastructure. The “backup mode” is a service of EAF approach,
which allows making a backup of current state of all artefacts and data of process. In
case when new automation solution become not acceptable for particular project, the
new service provides an option to restore all artefacts. For example, if company
would like to try automation solution for Git merging and branching workflows, the
service allows saving Git repository state before trying of automation solution and
restoring it at any time if required.

The last concept of new EAF vision is “infrastructure independent service”. It means
that company could design and save each automation solution in cloud and could call
it from many different infrastructures. It means that automation solutions will be
reusable and implemented once, could be used anywhere. The Fig. 2.2.4.8 provides
visual representation of infrastructure independent service.

Fig. 2.2.4.8. The vision of infrastructure independent service

References

1. Novickis L., Vinichenko S., Sotnichoks M., Lesovskis A. Graph Models and
GeoData Based Web Portal in Cargo Transportation. In: Scientific Journal of
RTU, Applied Computer Systems, 2015/17. RTU Press, 2015, pp. 35-39.

2. Bartusevics A., Novickis L. Models for Implementation of Software
Configuration Management. In: “Procedia Computer Science”, ICT in
Regional Development, Vol. 43, 2015. Elsevier, pp. 3-10.

2.3. Model based data visualization and real-time verification of
business processes
2.3.1. Development of technologies for large scale NoSQL data base
exploration and visualization

The existing research in the field of large-scale high-resolution display wall sys-
tems has mainly been focused on specific needs and environments. In many cas-es,
the solutions built for large-scale high-resolution visualization are only valid for a
specific use case (e.g. distributed 3D rendering, presentation of HTML con-tent,
stereoscopic projection). However, such solutions can soon become outdat-ed and be
left unmaintained (as seen with several distributed OpenGL library im-plementations).
This happens due to the appearance of new technologies that solve the existing tasks
in a more effective manner. A possible solution is to pre-vent most limitations on the
set of technologies that can be used when the soft-ware is running on a display wall
system. One way of achieving this is to use vir-tualization. This chapter presents
Infiniviz - a virtual machine based high-resolution display wall system. Infiniviz
approaches the visualization task in a seamless manner. The main aim of Infiniviz is
to be able running any common desktop operating system software on a large scale
high-resolution display wall without any modifications. Infiniviz achieves this by
running a headless virtual machine with the required operating system backed by a
custom software stack that handles the actual visualization. The authors have
performed performance evaluations, virtualization environment comparisons and
comparisons among other display wall architectures. This work along with key
conclusions has been summarized in this chapter.

2.3.1.1. Introduction

The traditional display system of desktop PCs (a single or multiple GPUs connected

to a single or multiple physical displays) often suffers from scalability limitations.
These limitations have created a distinct field of research that is devoted to the
construction of large-scale high-resolution display wall systems. Such display wall
systems are required in environments that require a display surface with
characteristics that cannot be achieved by a single physical display - either a very
large physical size or a very high resolution or both.

Consider the following use case. There is an ongoing telescope image archive
digitalization process at the Baldone observatory in Latvia. Old telescope images
stored on plates are being scanned and stored in a digital format. The resolution of the
resulting image is around 500 megapixels. Such images cannot be fully viewed on a
single PC system, not even with multiple monitors. A single display with 4K
resolution would allow viewing only 1.6% of the whole image. Even if higher level
hardware is considered — e.g. a system of 4 GPUs with 6 outputs each at a resolution
of — this is still only 88 megapixels in total (17% of the whole
image). Thus a simple conclusion can be derived — a pure hardware solution without
any software middleware that would union multiple hardware systems in a unified
display surface is simply not enough in the case of such a task.

The Reality Deck display wall [1] demonstrates a display wall system that
combines hardware nodes similar to the ones described above (4 GPUs connected to 6
physical displays) to drive a unified 1.5 gigapixel display surface through a custom

software stack. The capabilities of the Reality Deck display wall system can already
match the given requirements of displaying a 500-megapixel image. Thus this
example demonstrates how software solutions used in the display wall systems can
leverage the hardware limitations. One of the conclusions derived by the authors of
the Reality Deck was that even though PowerWall, one of the first high-resolution
visualization systems, was developed 20 years ago, the development process of such
systems has still much to improve upon.

However, the custom software stack of the display wall system introduces
compatibility issues. If the presented content is static (e.g. image or video files), it
must be stored in a format supported by the software stack. In most cases, this is not
an issue. However, if the content is generated in real-time by some client software
issues can arise. If the client software is already developed to use an internal API of
the software stack that drives the display wall, this software cannot be run on a
desktop operating system or another display wall system with a different API. If the
client software is developed based upon any on the standardized visualization APIs
present in the desktop operating systems (e.g. OpenGL, Direct3D, Direct2D,
DirectDraw, GDI), the software stack must also support that API. There are distinct
display wall systems targeted to support one or another of these APIs with the most
common example being OpenGL, but still, it only allows running client software
based on that API. Moreover, even the OpenGL implementations expose limitations.
The supported OpenGL versions are often not up to date. Moreover, it is not known
whether the supported versions will ever be increased to the up-to-date ones. This
clearly shows that the display wall system should not bother about this at all. In an
ideal case, the display wall system should only be exposing a set of display/rendering
entities that have some known capabilities and supported APIs to the client software
in the same way as an operating system would expose a GPU with the same
capabilities and APIs and manage these entities instead of implementing their
functionality. With such a solution a maximum software compatibility and portability
between desktop operating systems and display wall systems could be achieved.

After performing a survey on the field of displays walls [2], the authors of this
chapter tried to solve this situation with a different approach. The existing solutions
can be generalized as a software component that interacts with the client software and
exposes the display wall to them through some specific APIs. Instead, why not expose
the display wall to the client software through the standard means of the operating
system as a large monitor? In such scenario the client software would be able to use
all the standard APIs exposed by the operating system and no modifications would be
needed. With this though in mind the authors of this chapter designed a virtual
machine based high-resolution display wall architecture and developed a prototype.
By using virtualization, this display wall system can run the client software on a
virtualized instance of the operating system that the client software was developed for
and provide a presentation of the content that would normally appear on the attached
physical display device on the display wall instead. The virtual machine exposes a
virtual display with the resolution of the physical tiled display wall surface and a
virtual GPU backed by physical hardware in the host system. The actual visualization
is done by GPUs present in the hardware system that hosts the virtual machine.
However, instead of being displayed on an attached physical display, the content is
rendered in the memory of the GPUs and then encoded in a video stream which is
transmitted to client nodes that display it. In such a way the requirement for the
display wall system to implement any of the visualization APIs has been lifted. The
virtual machine directly exposes the capabilities and supported APIs of the hardware

present on the host system. All of the drawing and rendering calls made from the
client software running on the virtual machine are directly executed on the actual
hardware.

This chapter is an improved version of the authors’ previous publication [3], and it
is organized into six sections. The first section contains a short introduction to the
chapter. The second section gives a brief description of display wall architectures and
the issues present in them. The third section describes the proposed architecture of
virtual machine based high-resolution display wall system, the fourth section
describes Infiniviz — the display wall system based on this architecture. The fifth and
sixth sections summarize the lessons that authors learned throughout the development
and testing of the resulting system, and conclusions upon which to direct the further
work.

2.3.1.2. Display Wall Architectures and Their Problems

To understand the factors that drive the research related to the construction of

display walls one must be introduced the most important limitations in the classical
PC display system. For that reason, the authors need to introduce a few terms and
their explanations.

The terms display wall and video wall are used interchangeably in this and many of
the related works. Both of the terms are used to describe a large sized tiled display
surface. Each tile can be either a single physical display or an image from a projector.
The purpose of a display wall is to create a single continuous display surface that is
superior when compared to a single display or projector image regarding maximal
size, resolution or both.

Visualization software denotes the software that performs either a 2D drawing or
3D rendering work the outcome of which is an image that must be represented to the
user. Visualization software is the factor that creates the need for display wall
whenever the produced image cannot be presented on a single display. Visualization
software is not always a single user space process; a whole operating system can be
perceived as visualization software since it provides a way for the processes running
inside it to present visual data to the user.

In the ideal case, the visualization software should not be aware of the display
environment. It should not care whether it needs to use a specific 2D drawing or 3D
rendering API or another traditional API when running on the display wall or running
on a traditional PC system. In the context of this chapter, software awareness is
understood as the need for the visualization software to be aware of the display
environment and change its behavior accordingly. A display wall is called software
agnostic if it does not enforce software awareness.

Framebuffer is a continuous array of all pixels that represent the contents of an
image. Framebuffer is the source of the image that is presented on a display or
projector image. At the same time, it is the target of all the rendering and drawing
actions performed by visualization software. Framebuffer implementations may
differ, and this chapter covers research that has tried very diverse solutions.

In general, the intuitive approach to the building of a display wall is quite trivial –
one would simply to create a large display surface by physically tiling multiple
smaller displays or images of multiple projectors. However, that is only a part of the
solution. A system that provides the signals for the tiles at one end and exposes the
display wall to the visualization software that provides the content at the other end is
required. Such systems can be constructed in various ways – from purely hardware

based ones that involve simple signal cascading and scaling to complex software
systems involving distributed computing.

The traditional display system used in desktop PC systems consists of four
components (see Figure 2.3.1.1):
1 A visualization software that creates the visual data to be presented to the user

and interacts with the GPU or video adapter by executing 2D drawing and 3D
rendering commands;

2 A GPU or video adapter – a hardware peripheral in a computer system that
exposes and implements standardized 2D drawing and 3D rendering APIs (e.g.,
OpenGL, Direct3D), implements them, renders the results to an internal
framebuffer and provides the display signal to a display;

3 A display – a device that visualizes the signal from the GPU;
4 A medium that connects the GPU and the display.

Fig. 2.3.1.1. The traditional PC display system.

Each of these four components has some limitations in regards to the resolution of
the visualization on display. The GPU has a limited maximum resolution that is
enforced by the memory available on the GPU and the medium used for signal
delivery. The medium which is used to interconnect the GPU and the display has
some throughput limitation which limits the amount of data that can pass through in a
single unit of time. The display as well has a limited maximum resolution depending
on the limits of the chosen visualization technology (e.g. the maximum resolution of
the matrix) and the medium that delivers the signal.

Such dependencies among the components hold back the general progress — e.g.
why would a hardware vendor create a GPU with a resolution that no medium could
deliver or no display could visualize? Thus due to these limitations domains that
require large high-resolution display surfaces created the need to tackle this issue.
That was done by creating hardware peripherals and software systems that leverage
and combine the possibilities of the existing GPUs and untraditional mediums.

The mentioned limitations regarding resolution and size are a direct problem for
static content like images. However, another aspect that introduced the need for an
alternative to the traditional PC display system was the computing power difference
between CPUs and GPUs — a mismatch between the speed at which visualization
software generates the image and the speed at which the GPU can render it. For
example, graphical representations of fluid flow simulations done by supercomputers
could not be visualized by a single GPU at a real time. Thus again a scalable
rendering solution that could be expanded to meet the needs to visualize the generated
graphical data at the real time was needed.

Even though the hardware peripherals evolve they still impose some kind of
maximum limit of displays that can be connected. Moreover, removing constraints by

providing flexible and scalable solutions is one of the general aims of any research on
display walls. A good example to back this statement is the Reality Deck [1] — the
world’s currently largest display wall that has a resolution of 1.5 gigapixels. Pure
hardware could not achieve such resolution — the Reality Deck is built upon
hardware nodes that reach the available hardware constraints and driven by
scientifically developed software that composes these nodes in a unified framebuffer.

One of the main characteristics of a display wall system is how the display surface
is exposed to the visualization software. To achieve the task of being software
agnostic the display wall system must expose itself as similar as possible to the
classical PC display system. There have been several approaches to this task:

• Exposing the display wall through a custom implementation of widely used
3D rendering libraries, most often OpenGL;

• Exposing the display wall as additional displays by hooking in the GPU
driver. This is a path chosen by many software products that allow devices
like phones, tablets, and TVs to be used as additional displays for a PC
system. However, this requires a different implementation on each operating
system and leaves rarely used operating systems unsupported. Moreover,
since the operating system vendors can make arbitrary changes to the device
driver architecture, such solutions may be rendered dysfunctional after
releases of newer versions of the operating system. A good example in this
case is Microsoft Windows. Microsoft Windows XP had a driver model
name XPDM that supported using mirror drivers. A mirror driver allowed
duplicating the output of the primary display driver to a custom memory
region. Many software products were developed to support attachment of
custom display nodes by using this functionality. However with Windows
Vista a new driver model called WDM was introduced that added new
requirements for the mirror driver implementations and thus the software
products developed for XPDM had to be modified to be still supported;

• Providing a custom library that exposes API for the visualization software to
interact with the display wall.

The intuitive assumption that could arise is why not simply provide a fully virtual
GPU and hide all the display wall related internals inside the driver? This is a valid
approach to the issue but again becomes complicated due to need to handle different
operating system architectures. Operating systems expect some amount of hardware
presence (interrupt handling, DMA, etc.) from a GPU and implementing this could be
problematic due to the existence of closed source operating systems. However, it must
be noted that such a solution could fully mimic the traditional PC display system.

Most of the previously developed display wall systems try to solve the mentioned
hardware scalability limitations by separating the many functions of the GPU among
several components that are usually implemented as separate computer systems (see
Figure 2.3.1.2). For more scalability clusters of such systems can be used for each
task instead of a single instance. For example, to increase the rendering power the
display wall systems either expose custom 2D drawing or 3D rendering APIs or
provide their implementations for the standardized ones like OpenGL. Then the
display wall software stack forwards these calls to distributed rendering nodes thus
increasing the rendering power. Further down the pipeline the pixel regions produced
by the rendering nodes are reassembled and synchronized by one or many framebuffer
components. The framebuffer components then present the complete image on the
display wall.

Fig. 2.3.1.2. Generalization of the existing display wall system architectures.
The research in the display wall construction domain has given birth to numerous

display wall systems like Reality Deck [1], SAGE [4], SAGE2 [5], DisplayCluster
[6], Chromium [7], WireGL [8], Equalizer [9], CGLX [10], XMegaWall [11], SGE
[12], and others.

A detailed analysis of all these display wall solutions is outside the scope of this
chapter. However to provide a ground for comparison with the display wall
architecture proposed by the authors of this chapter a brief introduction is needed.

In general, the existing solutions can be divided in two groups:
• Ones that expose themselves as OpenGL implementations (WireGL,

Chromium, Equalizer, CGLX);
• Ones that perform pixel streaming from client workstations, host their

applications that can accept external input and provide custom or standardized
frameworks for the adoption of existing software (SAGE/SAGE2,
DisplayCluster, XMegaWall, Reality Deck). SAGE2 that offers to host HTML5
content directly on the display wall system is a good example of using
standardized technologies other than OpenGL for software adoption on a
display wall.

2.3.1.3 Virtual Machine Based High-Resolution Display Wall Architecture

The authors of this chapter propose a new display wall architecture (see Figure

2.3.1.3) [13]. This architecture in contrast to most of the current systems does not host

the framebuffer outside of the client system. Instead, it uses virtualization for the

Fig. 2.3.1.3. The proposed display wall architecture.

framebuffer implementation. It implements a virtualized GPU that works on top of
one or many physical GPUs. This approach allows removing a hard dependency
among physical outputs on the physical GPUs and the size of the display surface
available. The proposed architecture does this in a manner which hides this fact from
the visualization software and sets no specific requirements on it. Any visualization
software running in the client system interacts with a virtualized GPU that works just
like a normal GPU and exposes all the standard 2D drawing and 3D rendering APIs.
Underneath a custom display wall software stack implements these calls by using the
physically available GPUs in the system thus allowing efficient scaling by adding
more GPUs to the system in the case if the previously described gap between the
computing power and rendering power is encountered. The rendered data is then
encoded in a video stream that is transmitted over Ethernet to a display endpoint
system where it is decompressed and displayed on a connected display or projector.
To satisfy the needs of a multi-client environment, the display endpoint can receive
different independent streams and display them in a layered mode.

GPU virtualization has become a trending technique in the virtualization
technologies. Leading solution providers like VMware and VirtualBox have
implemented a way to provide the acceleration features like Direct3D and OpenGL
support of the host GPU directly to the virtualized guest operating system. Similar
technology is provided for XEN by NVIDIA vGPU and RemoteFX for Microsoft
Hyper-V. The GPU virtualization technology has successfully helped to utilize a
single GPU in a multi-operating system environment.

This approach can be applied to solve the issues that exist in the field of display
walls. If the virtualization technology provides the guest system with a purely
simulated and freely configurable GPU that supports hardware acceleration for 3D
APIs like OpenGL and Direct 3D by using the physically available GPUs this can
solve both problems — remove the dependencies on the physically available video
outputs and increase hardware utilization.

Let us look at the architecture in more detail. The physical host system runs a
software stack currently denoted as Framebuffer Manager and some kind of
virtualization platform which in turn hosts the guest operating system that is running
the content that needs to be visualized on the display wall. The virtualization platform
simulates a virtual GPU that can be freely configured in terms of virtual monitors and
resolutions to exactly match each desired use case depending on the amount of data
that needs to be visualized. The virtualization platform interacts with the Framebuffer
Manager software stack by providing notifications about drawing operations on the
guest operating system and access to the video memory contents of the virtual GPU.
The Framebuffer Manager itself performs event-driven management of the
framebuffers and handles (crops/scales) the mapping of image data from the virtual
monitors to the display nodes in the monitor wall. After the logical partitioning of the
image, the Framebuffer Manager uses hardware-based video encoding capabilities in
the host system to encode the image and provide an encoded video stream to each
display node. The mapping between display nodes and virtual monitors is flexible and
there are no hard constraints. As seen in the schematic of the architecture (see Figure
3), a virtual monitor can be mapped to a single or multiple display nodes. The given
example shows that virtual monitor vMonitor 1 actually takes up two physical display
nodes DN 1, DN 3, while virtual monitors vMonitor 2 and vMonitor 3 are each
displayed on a single display node DN 2 and DN 4 respectively.

The proposed architecture removes direct dependencies between the needed
monitor setup and presence of physical GPUs — all of this is taken care by the
Framebuffer Manager and virtualization platform. The Framebuffer Manager takes
care of using the present hardware for video encoding and 3D acceleration support for
the virtualization platform, while the virtualization platform provides unconstrained
display and resolution configuration options.

2.3.1.4. Infiniviz - Virtual Machine Based High Resolution Display Wall System

The next logical step for the authors of this chapter was to create a working display

wall system based on the virtual machine based high-resolution display wall
architecture [14]. This lead to the creation of Infiniviz. Infiniviz is the Framebuffer
Manager software stack, built upon VirtualBox for reasons explained further on.
Authors of this chapter deployed Infiniviz on a physical tiled display wall consisting
of 5x5 22” monitors and two different host systems:

• one with moderate hardware — Gigabyte Brix Pro mini PC (Intel Core i7
4770R CPU (4 physical cores, 8 virtual cores at 3.2 GHz), Intel Iris 5200 Pro
GPU, 12 GB of RAM and Windows 8.1);

• one with high-end hardware — 2 Intel Xeon e5-2630 v2 CPUs (12 physical
cores, 24 virtual cores at 2.60 GHz) , NVIDIA Quadro K4200, Windows 8.1.

Both host systems run VirtualBox as the virtualization platform with both Windows
and Linux guests. VirtualBox was chosen for two reasons. First, it was one of the few
open source virtualization systems that had support for a configurable virtualized
GPU. Second, it provided the best scalability options in terms of the total resolution
while other virtualization systems were capped at lower limits. Table 2.3.1.1 describes
these limitations in more detail.

Table 2.3.1.2. Resolution limitations of virtualization systems.

Vendor
Maximum resolution

for a homogenous surface Comments
NVIDIA vGPU 16 megapixels (8

displays at)
The mentioned results are based

on the NVIDIA GRID K260Q
card, other cards provide lower
capabilities

RemoteFX
(Microsoft
Hyper-V)

10 megapixels (8
displays at)

Windows Server 2012 R2 host
operat-ing system and Windows
8/8.1 guest operating system

VMWare
vSGA

4 megapixels (2 displays
at)

Only Windows guest operating
systems

Oracle
VirtualBox

Any configuration that
can fit in the video memory
of the virtualized

The video memory of the
virtualized GPU currently cannot
exceed 256MB

The authors have developed a Framebuffer Manager implementation that runs

alongside VirtualBox on the host operating system and collects the image data from
the framebuffers of the simulated GPU, encodes them into a H.264 stream with either
the Intel Iris 5200 Pro or the NVIDIA Quadro K4200 GPU. After the video has been
encoded the Framebuffer Manager streams it over a Gigabit Ethernet to the monitor
wall.

The monitor wall itself consists of 25 22” DELL displays, each of which is driven
by a Raspberry Pi A model device. The Raspberry Pi devices were chosen to
implement the role of the display node because of the low cost, efficient power usage
and ability to decode a H.264 at acceptable frame rates for live
streaming. The Raspberry Pi units are poorest regarding scalability in this prototype
since they support H.264 decoding only up to the resolution of
meaning using displays with higher resolution is not possible in the current prototype.

5
Fig. 2.3.1.4. The prototype running Xubuntu 14.04.

6
Fig. 2.3.1.5. The prototype running Windows 7.

The Infiniviz software stack is developed in a platform independent manner - it can

run on both Windows and Linux host systems. However, due to security reasons, only
VirtualBox versions older than 4.3.8 can be used on Windows without compilation
from sources. Since there is no such limitation on Linux the authors mainly favour
Linux as the host operating system. The guest operating systems had been run in two
modes - simulating 25 independent displays and one large

 display. The Figure 2.3.1.4 demonstrates Xubuntu 14.04 guest
operating system running common applications with static content like Google Maps
and SVG based graphs in Firefox and a PDF viewer. All these applications seemed to
work without issues regarding the high display area. The Figure 2.3.1.5 demonstrates
Windows 7 operating system running Chrome with Google Maps and Youtube. Also,
there is an open Control Panel instance showing that the system is being told that it is
using a single display with the resolution of pixels.

2.3.1.5. Lessons Learned

All the described development and evaluation process lead the authors to several
conclusions and observations.

Software agnostic display wall environment is hard to achieve due to the multiple
versions of the 3D rendering APIs that need to be supported. Initially, VirtualBox
seemed to be a great choice regarding support for the most popular 3D rendering APIs
— OpenGL and Direct3D. For OpenGL, VirtualBox has a code layer that dispatches
the OpenGL calls made in the guest operating system to the hardware on the host
operating system. The results are rendered into off-screen pixel buffers that are passed
back to the guest. Such approach has the benefit of exposing the correct OpenGL
version and capabilities of the hardware present on the host system. However, the
performance suffers from the fact that the rendered frames are pushed from GPU
memory to RAM after each rendering operation. This step cannot be omitted if the
produced image needs to be displayed on the host system. However, in a display wall
environment, VirtualBox code could be patched so that the rendered frames are left in
OpenGL surfaces on the GPU and the video encoding is performed directly on these
surfaces. Direct3D, on the other hand, has a much more complex implementation. To
provide support for Windows guests on all types of host systems, VirtualBox uses
Wine to map the incoming Direct3D calls to OpenGL calls and then execute them on
the host system. This is where the limitations come in. Currently, the latest supported
version in VirtualBox is Direct3D 9 while most software already requires Direct3D 10
and newer. Moreover, there are no guarantees that the newer versions of Direct3D can
be mapped to OpenGL in a fully functional way. Again as stated for OpenGL — the
display wall environment could introduce some restrictions that could allow easier
solutions. For example, allowing only Windows guest / Windows host combination for
Windows guests. In such case, a direct Direct3D call dispatch mechanism could be
implemented similarly to OpenGL.

Video compression codec choice for real-time video streaming is not as obvious as
it may seem. Currently, most of the multimedia content available either in a stored or
live format is encoded with the leading inter-frame ISO/IEC Moving Pictures Experts
Group (MPEG) codecs — H.264 and H.265. Both of the codecs are so widespread
because they offer better compression ratios compared to older intra-frame
compression methods like JPEG [15]. Since size is the most important factor for
media that is streamed over the Internet the ability to sustain real-time encoding and
decoding is not prioritized. However, in the case of desktop capture, these factors
switch places. VNC systems still use JPEG for transmitting the content since JPEG
performs better in the scenario where only small regions in the picture change from
frame to frame. Both H.264 and H.265 encode the full frame each time (there are
possible future improvements here since NVIDIA NVENC supports region of interest
encoding which has not been yet implemented in the virtual machine based display
wall system). JPEG can only encode the dirty regions of a frame. Moreover, in the
case where the only thing moving in the picture is the mouse pointer, this makes a
great difference. However, the content of the desktop can swiftly change from static
to very dynamic — and with dynamic content JPEG produces bitstreams with much
higher size than H.264 or H.265. Thus, the lesson here is that for optimum
performance the display wall software stack must use a hybrid encoding mode that is
able to use the best codec for each type of content and perform real-time switching
among them.

The hardware acceleration on GPUs will continue to evolve making the proposed
display wall architecture more and more efficient. Currently the hardware accelerated
video encoding available in the evaluated GPUs (Intel Quick Sync in Intel Iris Pro

5200 and NVIDIA NVENC in NVIDIA Quadro K4200) is not powerful enough to
provide real-time encoding for large-scale display wall systems. However, according
to the roadmaps of both hardware vendors, the performance of the GPUs will increase
very fast and will eventually exceed the CPU based video encoding technologies. For
example, the official NVIDIA statistics state that the number of
frames encoded per second on the fastest encoding mode has increased from 227 to
648 during four generations of GPUs (from Kepler to Pascal).

The main limit of the proposed architecture is the amount of virtual GPU memory
in VirtualBox which can be lifted or at least increased to a sufficient amount. The
achieved results regarding the total display resolution from the evaluated prototype
may not be impressive if compared to the Reality Deck. However, the only limitation
here is the hardcoded virtual GPU memory limit in VirtualBox. Thus, by removing
that and providing sufficient amounts of RAM, this display wall architecture can
provide higher resolution with only one GPU than a single node used in the Reality
Deck.

The modern operating systems are still somewhat incapable of handling large
amounts of displays with the built-in mechanisms. As seen on the prototype, both
Linux and Windows are not yet capable to flawlessly support a large number of
displays. Windows 7 could not identify more than 16 displays. Even though using a
single display with a large resolution is a better choice at least from the ergonomic
point of view there may be scenarios where using many separate virtual displays is
required. The maximum limits of the operating systems must be determined to
understand when the operating system itself becomes the bottleneck.

Even running common software like web browsers demonstrated issues in an
environment with such a high display resolution. For example, Chrome which seems
to have an internal limitation of the maximum memory it allocates on the GPU
stopped rendering content when the window was resized big enough that the contents
could not fit in this memory limitation. Also, Javascript based drawing started to get
quite CPU intensive at such a resolution.

Display wall systems are more vulnerable to synchronization problems among
display nodes. GPUs and screen splitters can easily synchronize all of the attached
physical screens at hardware level — either by using a common clock on all of the
outputs or by other means. If the display nodes of a display wall system are not
interconnected, it is hard for them to guarantee a simultaneous display of the current
frame. Even if a frame is divided and transmitted with minimum overhead on the host
side, additional latency can be introduced on the network level and the processing
side. The authors have considered using some kind of shared hardware clock among
the Raspberry Pi endpoint devices that would work as a common frame display
refresh trigger. However, such a mechanism has not been implemented yet.

2.3.1.6. Conclusion

The display wall domain is very heterogeneous. There are several solutions to the

same general problem but each targeted at some specific use case or the environment.
Due to the fact that the use of display walls has not been widespread — in most cases,
they are used in scientific or research facilities to either view some static high-
resolution content or display real-time simulations — the requirement to use custom
crafted client software to generate the visual content has not been a limiting factor.

The authors of this chapter have proposed a software agnostic display wall
architecture. An implementation of this architecture is able to run and visualize the
binary version of any client software that runs on a given operating system without
any modifications. This is achieved by running the corresponding client software in a
virtualized instance of the required operating system. The virtualized operating
system exposes a virtual GPU and a set of virtual displays. The virtual GPU matches
the capabilities of the actual host hardware except for maximum resolution, which is
defined as needed by the given physical display configuration. Any calls made to the
virtual GPU are actually handled on the physical GPUs. The result is properly divided
into regions corresponding to the physical display configuration, encoded into a live
video stream and transmitted to the physical display nodes. Moreover, the authors
have developed Infiniviz — a virtual machine based display wall system based on this
architecture and proven it to work.

This chapter contains evidence gathered from the prototype of this architecture that
the given premise is valid — the authors were able to virtualize Linux and Windows
operating systems, simulate a virtual GPU with a 52-megapixel resolution and present
the contents of this virtualized desktop on a physical display wall. No software
incompatibilities were encountered while running both casual desktop software (web
browsers and office applications) and domain specific software (CCTV surveillance
system).

The issues that were encountered are only relevant to performance — the limitation
of the maximum resolution is capped by the limit of the virtual GPU video memory in
VirtualBox and the flawlessness of the interaction is limited by the real-time video
encoding performance of the physical GPU on the host system. Both of these will
decrease with further releases of GPU architectures and VirtualBox.

If compared to the existing solutions the proposed architecture reduces the
complexity of the hardware — no distributed systems are involved — just one host
system with a set of attached display nodes. This eases deployment and maintenance.
The virtualization allows running any client software opposed to the limitations of
using OpenGL or custom APIs imposed by other display wall systems.

References

1. C. Papadopoulos, K. Petkov, A. E. Kaufman, and K. Mueller, “The Reality Deck —
an immersive gigapixel display.” IEEE computer graphics and applications, vol.
35, no. 1, pp. 33–45, 2015.

2. R. Bundulis and G. Arnicans, “Architectural and technological issues in the field of
multiple monitor display technologies,” in Databases and information systems vii:
Selected papers from the tenth international baltic conference, db&IS 2012, 2013,
vol. 249, p. 317.

3. R. Bundulis and G. Arnicans, “Conclusions from the evaluation of virtual machine
based high resolution display wall system,” in Databases and information systems:
12th international baltic conference, db&IS 2016, riga, latvia, july 4-6, 2016,
proceedings, G. Arnicans, V. Arnicane, J. Borzovs, and L. Niedrite, Eds. Cham:
Springer International Publishing, 2016, pp. 211–225.

4. L. Renambot, A. Rao,. Singh, B. Jeong,. Krishnaprasad, V. Vishwanath, V.
Chandrasekhar, N. Schwarz, A. Spale, C. Zhang, and others, “Sage: The scalable
adaptive graphics environment,” in Proceedings of wace, 2004, vol. 9, pp. 2004–09.

5. L. Renambot, T. Marrinan, J. Aurisano, A. Nishimoto, V. Mateevitsi, K.
Bharadwaj, L. Long, A. Johnson, M. Brown, and J. Leigh, “SAGE2: A

collaboration portal for scalable resolution displays,” Future Generation Computer
Systems, vol. 54, pp. 296–305, 2016.

6. G. P. Johnson, G. D. Abram, B. Westing, P. Navr’til, and K. Gaither,
“Displaycluster: An interactive visualization environment for tiled displays,” in
2012 ieee international conference on cluster computing, 2012, pp. 239–247.

7. G. Humphreys, M. Houston, R. Ng, R. Frank, S. Ahern, P. D. Kirchner, and J. T.
Klosowski, “Chromium: A stream-processing framework for interactive rendering
on clusters,” ACM transactions on graphics (TOG), vol. 21, no. 3, pp. 693–702,
2002.

8. G. Humphreys, M. Eldridge, I. Buck, G. Stoll, M. Everett, and P. Hanrahan,
“WireGL: A scalable graphics system for clusters,” in Proceedings of the 28th
annual conference on computer graphics and interactive techniques, 2001, pp.
129–140.

9. S. Eilemann, M. Makhinya, and R. Pajarola, “Equalizer: A scalable parallel
rendering framework,” IEEE transactions on visualization and computer graphics,
vol. 15, no. 3, pp. 436–452, 2009.

10. K.-U. Doerr and F. Kuester, “CGLX: A scalable, high-performance visualization
framework for networked display environments,” IEEE transactions on
visualization and computer graphics, vol. 17, no. 3, pp. 320–332, 2011.

11. Y.-B. Kang and K.-J. Chae, “XMegaWall: A super high-resolution tiled display
using a PC cluster,” in Proceedings of computer graphics international, 2007, pp.
29–36.

12. K. A. Perrine and D. R. Jones, “Parallel graphics and interactivity with the
scaleable graphics engine,” in Proceedings of the 2001 acm/ieee conference on
supercomputing, 2001, pp. 5–5.

13. R. Bundulis and. Arnicans, “Concept of virtual machine based high resolution
display wall,” in Information, electronic and electrical engineering (aieee), 2014
ieee 2nd workshop on advances in, 2014, pp. 1–6.

14. R. Bundulis and G. Arnicans, “Virtual machine based high resolution display wall:
Experiments on proof of concept,” in Proceedings of the international conference
on systems, computing sciences and software engineering (scss 14), 2014.

R. Bundulis and G. Arnicans, “Use of H.264 real-time video encoding to reduce
display wall system bandwidth consumption,” in Information, electronic and
electrical engineering (aieee), 2015 ieee 3rd workshop on advances in, 2015, pp. 1–6.

2.3.2. Business process runtime verification

The chapter is devoted to the topics of self-management and its implementation.
Self-management features are intended to support the usage and maintenance
processes in information systems life cycle. Four self-management types are analysed
in the paper. Run-time verification and environment testing can be implemented
without any intervention in base business processes, while self-testing and business
process incorporation in system require an instrumentation of the base business
processes. The approach is applied in praxis and shows that the implementation of
self-management features requires relatively modest resources.

2.3.2.1. Introduction

The man-kind's progress of information technologies has brought up the complexity
of computing systems. The IBM autonomic computing manifesto [1] claims: “It’s
time to design and build computing systems capable to manage themselves, adjusting
to varying circumstances, and preparing their resources to handle most efficiently the
workloads we put upon them”.

One of the possible solutions of this problem is to entrust at least some of complex
IT supervisory processes to the systems themselves. IBM autonomic computing
manifesto defines the self-management by four fundamental self–* features: self–
configuration, self–healing, self–optimization and self–protection. Later [2] the “self–
chop” was extended to eight self–management properties. Today the number of
identified self–management properties reaches 20 and more [3].

There are two possible ways trying to implement the self-management: (1) to
construct an “autonomous supervisor” – to develop autonomous information system
for supervision of other computer systems, or (2) to implement the properties by
adding “independent” components (or add-ins) to the system.

The autonomous supervisor idea is consistent with the nature of the autonomic
computing – independent autonomic components like natural live organisms solve
self–management problems even without knowing about existence of other
components. Researchers [4] have tried to create a universal supervising component
allowing the implementation of almost all self-properties. Such a universal approach
unfortunately is for the time being faced with serious difficulties - each individual
self-property requires a specific approach, and therefore the individual
implementations are rather preferable. It also meets the strategy of continuous step-
by-step software development without attempting to construct the entire system as a
whole at the very beginning

The implementation of self-management properties by adding independent
components to information systems is a rather practically oriented approach. A group
of specific solutions should be developed, partially built-in into the target systems, to
enhance systems with self-management properties.

There are two bigger groups of self–management properties, referred to as smart
technologies in [5]:

• self–management properties to support information system operation: (1) run-
time verification - control whether internal processes executing is compliance
with business measures, (2) environment testing - control of interaction with
the external environment;

• self–management properties for maintenance support (3) business model
incorporation – built-in business process model lets to change the functionality
of the information system by updating the business process descriptions, (4)
self-testing – built-in testing support component for internal whether system
process control usable also in a productive mode.

Since each self–management property is simple to implement, the approach of
smart technologies becomes rather applicable and it can be used even by rather small
team of developers or companies (40-50 employees). This conclusion is based on the
authors' subjective experience and the research [6]. However, resource assessments by
other companies may be radically different from those as the implementation of smart
technologies requires deep understanding of software engineering methods and the
architecture of the specific software solution.

At the same time, it is the weak point of this approach: self–management properties
may be developed practically from the scratch for every information system. To
minimize this impact, the authors, suggest developing self–management properties as
ideas applicable for wide spectra of systems. Thereby this paper discusses smart
technologies which bring software development towards the objectives of IBM
autonomic computing manifesto.

This chapter is a continuation of the research described in [7] and contains more
detailed characteristics of implementation of smart technologies. Structure of paper –
the second section deals with related research; the third section describes smart
technologies for systems’ operation; the fourth section describes smart technologies
for systems’ maintenance.

2.3.2.2 Related work

Autonomic computing and smart technologies have a similar goal – to reduce the
complexity of system use by delegating some part of user support functions to the
information system itself. The autonomic computing manifesto declares a vision of
fully independent computer systems that are able to self-management. The closest
from the perspective of this paper is self–diagnosis – a system’s ability to analyze
itself in order to identify existing problems or to anticipate potential issues. Some of
self-properties discussed in this paper are contained by self–diagnosis: run-time
verification and testing of execution environment. These properties support system
users during its runtime: at first users can verify if the system is running correctly in
changing environment and then – whether all of business tasks are accomplished
correctly.

Other two of smart technologies are aimed to the support of system maintenance
process. The first of them is self–testing: it intends to include testing components into
system itself. Practical experience shows that this solution helps to verify software
correctness not only during software development likewise it would be done by
traditional testing tools but also after the system is taken in production and the
maintenance has been begun. However, it helps to verify systems correctness in real
productive environments.

The last one of smart technologies, business model incorporation, applies to the
self–configuring: it is a system’s ability to (re)configure itself by (re)setting its
internal parameter values to achieve high-level policies or business goals [3]. The
existence of this property potentiates implementing the principles of Model Driven
Development (MDD). MDD provides business process model integration with

computer system, thus allowing updating systems functionality by changing business
processes definitions.

As of now, manifesto’s targets have been met only to some extent. Paradoxically, to
solve the problem — make things simpler for administrators and users of IT — you
need to create more complex systems. Continuing efforts on autonomic systems
include both, theoretical research and practical implementation [8]. Although many of
self–properties are introduced, there is still place for innovative implementations [9].
Many of these are provided as individual compact solutions like smart technologies.

2.3.2.3 Self-management for system operation

The studies of system life cycle [11] usually focus on the problems of system
development. Usually software developer teams are IT professionals and experts
therefore they have practically no problems with use of complex technologies. Many
of them consider implementing of several non-functional features like self–
management properties to be a waste of time and resources.

On the other hand the complex technologies of nowadays lead to complex
solutions with awkward usability. Thereby information systems sooner or later are
upgraded to improve their usability. The “ordinary” users of information systems
become a target audience of self–management properties because they often have
difficulties in overcoming of IT complexity. On this account the main focus of the
next chapter discussing two smart technology features will be devoted to the support
issues for better and easier information system’s operation (exploitation) instead of
software development phases.
2.3.2.3.1 Runtime Verification

Context

The business process runtime verification is the self-management property which
allows verifying whether the business process is executed correctly and in compliance
with all of time restrictions. This property is particularly useful when business process
is supported by two or more loosely coupled information systems or some of business
process steps are not automated at all.

Likewise, runtime verification is required to prevent conflicts of different
processes and systems in collaboration, where one part of the process is done by
people, and the other part is supported by software. The software can be designed to
support particular processes in different environments at different time frames.

Runtime verification has been well known for years in the area of embedded
systems. It is an approach to computing system analysis and execution based on
extracting information from a running system and using this information to detect and
possibly to react to observed behaviors satisfying or violating certain properties. Such
defines mechanisms may be included in the system during its development or they
may be included as independent controls from the base process. The independent
character of such mechanism allows making later adjustments by adding or disabling
the controlling component when a system is developed, and changes are made. These
ideas can be applied in business process runtime verification, too.

Solution

Authors [11] propose a solution for business process runtime verification (see
Figure 1) using three objects - verification model/description, agents and controller:

• a verification description contains instructions about the correct execution of
the base process;

• an agent is a software module for registering of base process execution events;
• a controller compares the events received from agents with the permissible

(“correct”) events described in the verification model. As a result, the
controller may discover the incorrect behavior of base processes. If
inconsistencies are detected, the controller sends messages to the user.

If the base process is already described by a graphical model, the verification
process can be created from the base model by indicating those process steps which
will be carried out in the runtime verification process.

Implementation

The developed runtime verification solution was piloted in bank's electronic
clearing system (ECS). It identified file processing delays and bottlenecks. Authors
propose to build runtime verification solution as asynchronous multi-agent
mechanism: asynchronous – it runs in parallel with process being verified (base
process), multi-agent – processes are observed by multiple agents, providing
information for verification controller.

The proposed solution is intended to "track" verifiable processes by following their
“footprints". For instance, if system exports some data, it will leave “footprints” in the
filesystem, i.e., a new file will be created. From the verification perspective it is
important to establish the fact of file creation, e.g., notice filesystem events "new file
created". Similarly, other events can also be specified for verification purposes: New
database record inserted, File is deleted, File is modified, E-mail is sent, Content of
web page is changed, Etc.

These and other events may be used for process verification and in order to confirm
process step execution. Therefore, verification could be done by keeping track of
external events. Proposed verification mechanism contains two components:

• Controller. This component is centralized and provides verification mission it
compares noticed events with process verification description, i.e., what could
happen during the execution of the process instance. Controller, knowing the
expected process events, requests agents to record the relevant process events.

• Agents. They are verification mechanism components, which observe process
execution environment at the request of the controller and reports, if relevant
events are detected. Asynchronous two-way agent and controller collaboration
is effective, if process is running in eventful environment and only some of
them are useful for verification (e.g., only few filesystem events will be
relevant to one system). However, if all events could be useful for verification,
simple agents with one-way collaboration can be used – these agents report
about all detected events without controller’s request.

 Figure 2.3.2.1. Smart technology component: Runtime verification [7].

The verification solution is designed to support freely expandable list of agents:
agents may be implemented for different environments according to the needs of
verification. Authors have developed compact xml–based domain–specific language
that enables specification of process verification. The language contains only concepts
required by the verification with insignificant overhead for workflow definition (states
and links). The process verification description that corresponds to a particular base
process is represented by a directed graph where the vertices represent the events that
approve execution of base process steps. The term "event" within the scope of
verification description language implies changes in the system's "memory" (file
system, e–mail, database etc.), which can be handled by agents. Arcs between events
represent the order in which events are executed. The syntax and the semantics of the
verification description language see [12]. Each event may have absolute time and
relative time restrictions:

Each description of process verification has at least one start activity and one end
activity. Likewise each description may contain the following attributes:

• A verification process instance load flag – whether the process instance is
started by occurrence of the start event or by another verification process
instance;

• Parameters and variables that are used in process verification events (these
provide process instance identification);

• Report settings when errors occur or time limit warnings must be sent.
The implementation of the proposed approach requires programming of

approximately 10000 LOC in C#, and it includes the implementation of the controller
and two agents.

The runtime-solution was developed step-by-step. A simple process execution
control language with synchronous event agents was implemented during the first
phase. The user experience gathered using the prototype developed in the first phase
showed the need for asynchronous agents. They were created in the second phase, and
there was shown that the runtime verification process creates a negligible additional
load for the execution of business processes.

Results

The piloting results lead to the three main conclusions – (1) the solution provides a
convenient instrument for the tracking of business process execution, (2) the solution
is able to detect business process execution defects, and (3) the data processing

event

user

user

Base process

ft
data
processin

execution
messages

Control process

controller,
modeling,
configuratio

system verification process creates a tiny extra load for the involved information
systems infrastructure.

The solution provides a number of interesting possibilities, which bring us closer to
the goal defined by ideas of autonomic computing:

• the verification process can be defined without modifying the base process -
the base process can have more than one verification process so as to verify all
of its various aspects;

• the verification process runs in parallel to a base process and does not interfere
with it;

• the process verification can be added dynamically to legacy systems;
• the process verification does not depend on modeling language used for

process description; it depends only on possibility of verification agents to
identity events of the base process.

Likewise, some solution limitations must be taken into account: verification
mechanism can detect only those base process steps which leave some modifications
in the computer systems „memory” detected by agents.

 2.3.2.3.2 Environment Testing

Context

The environment testing is the self–management feature for controlling and
monitoring of operation (execution) environments to ascertain all involved operation
environment fit to the requirements necessary for successful running of the
information system. The requirements can relate to operating system, network
characteristics, workstation parameters, etc. Discrepancy between the information
systems requirements to external environment and the concrete execution
environment may occur in several situations:

• Workstation may be incompatible in various means: insufficient memory or
processor performance, inadequate network connection and other technical
parameters. These are cases when execution environment verification may be
done once.

• Workstation may use external resources and availability of these resources
may vary during execution time. E.g., some of web services may be
unavailable because of lost network connection on server downtime.
Obviously in these cases execution environment should be verified
continuously.

• Workstation settings do not comply with software requirements: directory
structure does not contain all of required subfolders, decimal separator must be
the symbol “,”, data base server must be reachable, etc.

• Developers sometimes assume that software, which works in development
environment, will keep working after it is deployed elsewhere, hence encoding
some assumptions about the environment into the program. As a result, when
the soft-ware is installed in other environment, which is different from the
development environment, the software may fail or work only partially
correct.

Practical use of information systems shows that many incidents and failures are not
related to the functionality of the information system itself, but rather are caused by
inadequate infrastructure and the execution environment. It means information
systems must be accompanied by automatic means for external environmental testing.

Solution

Authors [13] propose a technology, which allows independent environment checks,
performed by the software, named – “checker”, in order to validate if the execution
environment is suitable for normal execution (see Figure 2.3.2.2). The proposed
solution implies gathering these requirements in a “software profile” to be able to
validate the execution environment before program’s starting. Only if the results of all
checks are satisfactory, the program can be considered prepared for work at a given
environment, otherwise the session is stopped, giving the user an explanation, why it
is not possible to perform work.

Figure 2.3.2.2. Smart technology component: Environment testing [7].

A program execution profile is a document achieved when all the requirement
descriptions of software are combined together. The profile can be formalized as a
separate document and supplemented to typical software deliverables such as code
and documentation. The main, but not the only use of the profile is validation of
execution environment during program use.

The practical environment testing task is carried out by “checker”, which manages
environment validation modules - drivers. Each driver is an atomic unit, which
enforces validation of a single type of requirement; this is done by reading
information from the environment and comparing it to reference values.

To be able to modify the set of checks to be performed without modifying the pro-
gram code, information about the checks (both the algorithms and reference values)
must be stored outside the code of base system – in the software profile. This concept
differs from other approaches used in practice – both from the ones, which validate
the environment straightaway after installation or updating, and from the others,
which try to “hide” the checks in source code.

Implementation

There are four mutually independent logical layers necessary for implementation of
the environment testing:

• Information system – the business software you need to run in the
environment that should be checked. The mechanisms of the execution
environment are independent from the business software, i.e., they may be
used without changing the business software source code.

• Software profile – a list of requirements must be met to ensure appropriate
business software running in an environment. The requirements can be
described in a standardized XML-based language. The language can be

system information

user

Information system

operation system

testing
messages

Environment
testing

software profile, Software
profile

complicated by the many different parameter values related to the environment
but unspecified during the development, for instance, the names of file folders
or their location on hard drives.

• Testing modules (checkers) – programs for checking of fulfillment of certain
requirements in a given environment. Each module is an atomic unit checking
only one kind of requirements. The checking consists of reading the
information from the environment and comparing it with the benchmark
values.

• Testing coordinator – a component for monitoring of the environment testing
processes modules. It analyses the software profile, runs the testing modules
and processes the gained results. The implementation of this component must
be flexible and open to be able to supplement it with new types of
requirements and testing modules and this feature complicates the test
coordinator structure significantly. The testing coordinator also must be
compatible with the language which is not yet fully defined during the
development of the coordinator. It can be solved by incorporating only a
language syntax analyzer into the testing coordinator, therefore the semantic
sense of the requirements is interpreted on the testing module level.

The practical implementation showed that development of the proposed approach
requires relatively little programming resources (~4000 LOC in C#).

Results

The proposed solution since 2009 is used in a number of local information systems
in Latvia. An execution environment testing was usually performed when supplying a
new version of the information system. The new version was installed only after the
current execution environment was checked for its ability to run the new version.
Also, receiving alarms from users about the systems malfunctions there was first
tested if the execution environment of the concrete workstation meets the
environment requirements. In many cases, missing or wrong components of the
execution environment were the reason for malfunctions.

2.3.2.4 Self-management for System Maintenance

This chapter is dedicated to the support, which may be provided to the information
systems by self–properties during maintenance of these systems. After the first
version of information system is deployed to the operation environment, it is will be
updated or modified several times to comply with real user requirements. This leads
to regular changes being introduced into the information systems.

In turn, this means that: (1) change requirements must be defined, (2) the software
must be updated accordingly, (3) each of software versions must be tested (it should
include regression tests and tests for new or updated functionality), (4) software
should be deployed to the runtime environment and, if it requires, system data should
be migrated. Furthermore usually system execution may be stopped just for rather
limited period of time. The authors will discuss two self–properties introduced for
support of software maintenance.

2.3.2.4.1 Business Model Incorporation

Context

Business model incorporation is a self-management feature allowing to adapt the
functionality of information system without (or with minimal) coding effort, just by
changing graphical business process descriptions. One of the implementation options
is to apply Model Driven Development (MDD) principles for software development.

Model driven development provides a range of advantages for the system
development, maintenance and execution [14]. Same of main advantages are: (1)
MDD provides high level of business process abstraction thus providing less error-
prone description, meaningful validation and exhaustive testing, (2) MDD bridges the
gap between business and IT, (3) MDD captures domain knowledge, (4) MDD results
in software being less sensitive to changes in business requirements, (5) MDD
provides up-to-date documentation since the models describe the essential issues of
the information system’s usage. How should the system be developed to gain
advantages provided by MDD?

Solution

At the beginning of information system development the business processes (see
Figure 2.3.2.3) should be described as the information system will be designed to
support them. A set of business process descriptions are created using DSL, and it
serves as business process model. Graphical representations like diagrams can easily
be understood and used by domain experts (as a rule, non-IT specialists) for the
business process description. After the business process model is created, the
information from the diagrams can be transferred to the database of an information
system, and it is a task for IT professionals. The business process descriptions are
embedded into the information system, and the engine of the information system can
interpret information born from the diagrams. Embedded business processes ensure
that the information system behaves according to the business process model.

Figure 2.3.2.3. Smart technology component: Business process model incorporation [7].

However, the proposed business process incorporation approach differs radically
from the model driven architecture (MDA): MDA offers a complete application
generation using business process specification described in unified modeling
language (UML). If the business processes are changed, the changes must be
implemented in the software specification and then new software should be generated.

The proposed approach of smart technologies provides business process execution
engine running according business process definition (domain specific language or

activities

Business
model

user

Information system

software,

data
processing

modeling

DSL is used for process description). It provides the possibility to develop flexible
applications with user-friendly interfaces which can be implemented for each of
systems independently. Furthermore, business processes can be updated without
software modifications, and the functioning of the information system can be updated
by changing of business process descriptions, without programming.

Implementation

The smart technology described in the chapter was developed and used in a number
of national information systems in Latvia for many years. Therefore, it is problematic
to give an accurate assessment of the resources spent for the implementation.
However, it should be noted that the information systems (including the appropriate
smart technology features) were implemented by teams of 4–6 IT specialists.

The implementation of the described approach was done in four consecutive, steps:
• Defining of DSL and design of graphical editor. In contradiction to the

traditional software development approach, a specific, the user needs adequate
DSL was used, not one, all modeling capabilities covering modeling language.
The graphical editor DIMOD [6] for graphical definition of DSL syntax was
designed using the tool building platform GrTP [15, 16]. A set of business
process descriptions (business process model) was created using the DSL.

• Business process modeling. Graphical representations like diagrams can easily
be understood and used by domain experts (as a rule, non-IT specialists) for
the business process description. Both domain experts and IT professionals
were involved in the business process modeling: IT professionals advised
domain experts in usage of DSL and tools as well as helped to describe the
most complex processes, whereas domain experts were able to model and
update the existing processes independently since mastered the tools and the
DSL.

• Business process transfer to the database. After the business process model is
created, the information from the diagrams may be transferred to the database
of an information system, and it is a task for IT professionals. An API is
created which allows you to access the IS software model artifacts repository
and write them into information system database in the required format.

• Built-in business process model. The business process descriptions are
embedded into the information system, and the engine of the information
system can interpret information born from the diagrams. Embedded business
processes ensure that the information system behaves according to the
business process model. It was implemented as an interpreter for execution of
created business models by joining the business process diagram objects like
events, actions etc. with the information systems’ elements like screen forms,
data base operations etc.

Unfortunately, the business process incorporation into information system can’t be
created as a completely independent component being able to interact with the base
process without any modifications of it. This is a substantial deviation from the
principles of autonomic computing described in the previous chapters.

Results

The solution described in this chapter leverages use of DSL as language for
business process definition providing user – friendly method for process description.

As practice shows [17], it is possible to create a special tool for transfer of model’s
data to executable application relatively quickly. The API of the graphical editor can
be used to access the model’s repository, to gather the information and to transfer it to
applications database. When business model is added to the system database, there is
no more need for DSL editor repository in the system’s execution environment. In
turn, it provides numerous advantages for system performance and usability. Thus
guaranties that the application operates according to the model developed in a
graphical DSL. And the overall quality of the application – usability, reliability,
security, performance etc. – is dependent on the application itself, not on the
hypothetical ability of a code generator to create an application in the desired quality.

2.3.2.4.2 Self-testing

Context

Self-testing is the self-property providing the software with a feature to test itself
automatically prior to operation. There is similarity between self-testing and hardware
self-checking where computer tests its own readiness for operation when it is just
turned on. The purpose of self-testing is to use a built-in support component for
automated execution of previously accumulated tests cases not only in test
environment, but also in operation (production) environment.

Solution

Self-testing contains two components:
• Test cases of system critical functionality that check the set of functions

without which the software could not be used. Identification of critical
functionality and designing of tests for it is a part of the requirement analysis
and testing process.

• A built-in automated testing mechanism (regression testing) provides
automatic execution of tests and comparison of results with benchmark values.

The automated testing mechanism provides four execution modes (see Figure
2.3.2.4): (1) Test capture mode - new test cases are captured or existing tests are
edited/ deleted. (2) Self-testing mode - automated self-testing of software is done by
automated execution of stored test cases. (3) Use mode - there are no testing activities
– a user simply uses the system. The built-in self-testing mechanism can be used in
emergency situations to find out the internal state of the system, which may facilitate
the analysis of the causes and consequences of the emergency situation. (4)
Demonstration mode. The demonstration mode can be used to demonstrate system’s
functionality. User can perform system demonstrations using use cases stored in
storage files. These features are typically a part of traditional testing tools.

Figure 2.3.2.4. Smart technology component: Self-testing [7].

Implementation mechanism of self-testing approach [18] uses an idea and means of
the software instrumentation, which is already known from the 70-ies. Testing
operations are put by programmers into certain places of the source code; named - test
points. Testing operations allow to track the changing values and to compare them
with a benchmark. Thus it is possible to check the correctness of the information
system. Unfortunately, this solution is usable only for that software whose
development is in the user's influence sphere.

Implementation

The self-testing implementation includes two main steps:
• Instrumentation of software. The information system must be supplemented by

test-points covering the essential (“critical”) functionality of the system. The
test-points are built into the information system’s source code, and they ensure
gathering, storing and using of test data in different self-testing modes. The
instrumentation can be done only by developers of the particular information
system.

• Test capturing. The data for testing of the critical functionality should be
captured by using the instrumented information system in the test capture
mode. Self-testing components are a part of the software to be tested. And this
means that software developers, customers and users do not need to install
additional testing tools to perform system testing.

• The implementation of self-testing feature required 10000 LOC in C#.
• The self-testing tool, which began in 2010, was divided into two modules:
• Self-testing module – C# .NET library (*.dll file) ensuring the interface (API)

for building of test-points into the information system
• Self-testing management module – C# .NET application ensuring test

capturing, creating, editing, execution, comparing with benchmark values,
configuring of the tool etc.

Additionally, the source code of the particular system should be instrumented with
testing activities like accumulating of test cases and executing of them. These
investments are justified when the system is designed and developed for long-term
use.

Like the business model incorporation feature, the self-testing also requires
modifications of the base process.

test

capture of test cases
and benchmark
values

events

user

user

Information system

software instrumented with

data
processing

test report

Self–testing

Results

It should be noted that the idea of built-in support for program testing has been
offered quite a while ago [19] and it has been implemented in some projects. Practice
shows that the most important self-testing benefits are gained by using a single testing
support for both development and maintenance phases.

2.3.2.5 Conclusions

There are four smart technology features provided and described in this paper.
Authors are not discussing the research directions where no practical implementations
of technologies are achieved yet. These extends variety of software self–properties
and allow to achieve goals similar to autonomic computing – facilitating the use and
maintenance of systems by including support components in them:

• building of smart technologies into information systems requires additional
work; the proposed smart technologies have advantages when the information
systems are used by many users without profound IT knowledge and the
cooperation between the customer and the supplier is long-term;

• according to authors’ experience smart technologies can be used even in a
small to medium size IT company with 40-50 employees.

The smart technologies which are described in this paper achieve the autonomic
computing initiative goals only partially. There may be still a vast variety of smart
technologies which would be useful to explore and implement practical systems. For
instance, these would include – data quality control, access control, performance
monitoring, availability monitoring which are easy enough to implement for a
small/medium size organization.

References

[1] P. Horn, Autonomic Computing: IBM's Perspective on the State of Information Technology, IBM,
(2001) http://libra.msra.cn/Publication/2764258/autonomic-computing-ibm-s-perspective-on-the-
state-of-information-technology

[2] J. Kephart, D. Chess, The Vision of Autonomic Computing, IEEE Computer Magazine 36 (2003),
41-52, doi:10.1109/MC.2003.11600552003.

[3] P. Lalanda, JA. McCann, A. Diaconescu, Autonomic Computing: Principles, Design and
Implementation, Springer-Verlag, London, 2013.

[4] R. Sterritt, D. Bustard, Towards an autonomic computing environment, Proceedings of 14th
International Workshop on Database and Expert Systems Applications, Prague, (2003), 694 – 698.

[5] Z. Bičevska, J. Bičevskis, Smart Technologies in Software Life Cycle, Proceedings of 8th
International Conference on Product-Focused Software Process Improvement (PROFES 2007),
Springer-Verlag, Berlin, Heidelberg, (2007), 262-272.

[6] J. Bicevskis, Z. Bicevska, Business Process Models and Information System Usability, Procedia
Computer Science 77 (2015), 72 – 79.

[7] J. Bicevskis, Z. Bicevska, I. Oditis, Self-management of information systems, Communications in
Computer and Information Science 615 (2016), Springer-Verlag , 167-180.

[8] J. Bicevskis, Z. Bicevska, K. Rauhvargers, E. Diebelis, I. Oditis, J. Borzovs, A Practitioner’s
Approach to Achieve Autonomic Computing Goals Baltic J. Modern Computing 4 (2015), 273-296.

[9] J. Kephart, Autonomic computing: the first decade. Proceedings of 8th IEEE/ACM International
Conference on Autonomic Computing (ICAC), (2011), 1-2.

[10] Roger S. Pressman, Software Engineering, The McGraw-Hill Comp., Inc., 2010.
[11] I. Oditis, J. Bicevskis, Asynchronous Runtime Verification of Business Processes, International

Journal of Simulation: Systems, Science and Technology 16 (6), (2015) 6.1-6.11.
[12] I. Oditis, Runtime Verification of Business processes, PhD thesis, University of Latvia, 2016.

[13] K. Rauhvargers, J. Bicevskis, Environment Testing Enabled Software – a Step Towards Execution
Context Awareness, Selected Papers from the 8th International Baltic Conference Databases and
Information Systems, IOS Press, 187, (2009), 169–179.

[14] Johan Den Haan, 15 reasons why you should start using Model Driven Development, (2009),
http://www.theenterprisearchitect.eu/blog/2009/11/25/15-reasons-why-you-should-start-using-model-

driven-development/ .
[15] J. Barzdins, A. Zarins, K. Cerans, A. Kalnins, E. Rencis, L. Lace, R. Liepins, A. Sprogis GrTP:

Transformation Based Graphical Tool Building Platform, (2014), http://sunsite.informatik.rwth-
aachen.de/Publications/CEUR-WS/Vol-297/

[16] A. Sprogis, Configuration Language for Domain Specific Modeling Tools and Its Implementation,
Baltic J. Modern Computing, Vol. 2, No. 2, (2014), 56-74.

[17] J. Cerina-Berzina, J. Bicevskis, G. Karnitis, Information systems development based on visual
Domain Specific Language BiLingva, Lecture Notes in Computer Science, LNCS 7054 (2012),
Springer-Verlag, 124-135.

[18] E. Diebelis, J. Bicevskis, Software Self-Testing. Proceedings of the 10th International Baltic
Conference on Databases and Information Systems, IOS Press, 249, (2013), 249 – 262.

[19] M. Chengying, I. Yansheng, Z. Jinlong, Regression testing for component-based software via
built-in test design. Proceedings of the ACM symposium on Applied computing, Seoul, (2007).
1416-1421.

