

Vehicle detection using non-invasive wireless magnetic sensor network

Aivars Severdaks
Martins Liepins

IEGULDĪJUMS TAVĀ NĀKOTNĒ

Multifunctional intelligent transportation system point technology Nr.2010/0250/2DP/2.1.1.1.0/10/APIA/VIAA/086

Motivation

- Need of vehicle detection for traffic statistics
- Non-invasive sensors
- •Goal efficient traffic management


Vehicle detection

- Vehicle can be detected by it
- -Appearance (video camera, laser sensor, microwave sensor)
- -Sound (microphone array)
- -Heat (PIR sensor)
- -Metal body and engine (magnetometer, induction loop)
- -Weight (pressure sensors)

Magnetic sensors

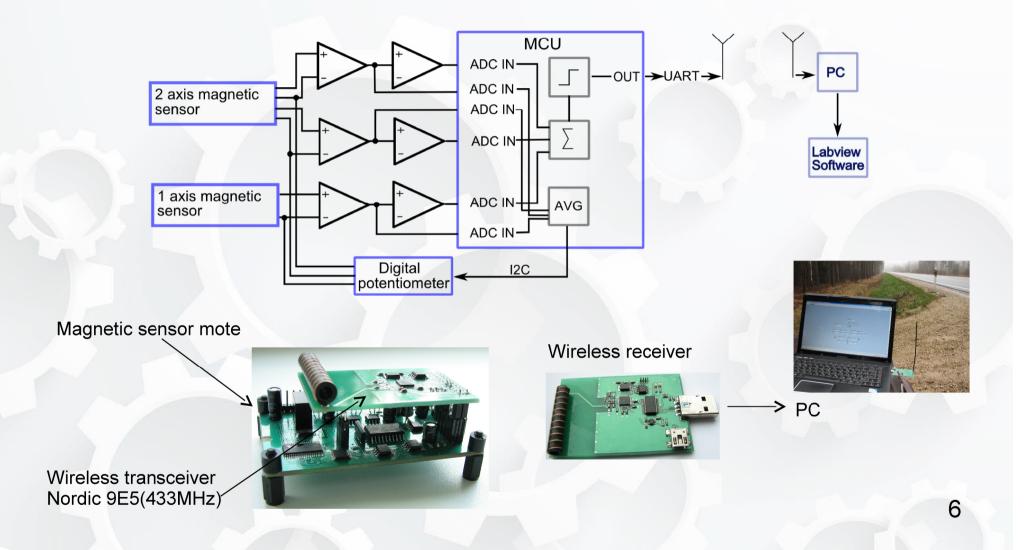
- Any metal object creates Earth's magnetic field distortions
- •Magnetic sensor registers Earth's magnetic field local distortions
- •Magnetic field emitted by electronic devices from the car is very small
- Indirect measurement

Proposed solution

•Sensors are placed on both sides of the road opposite to each other

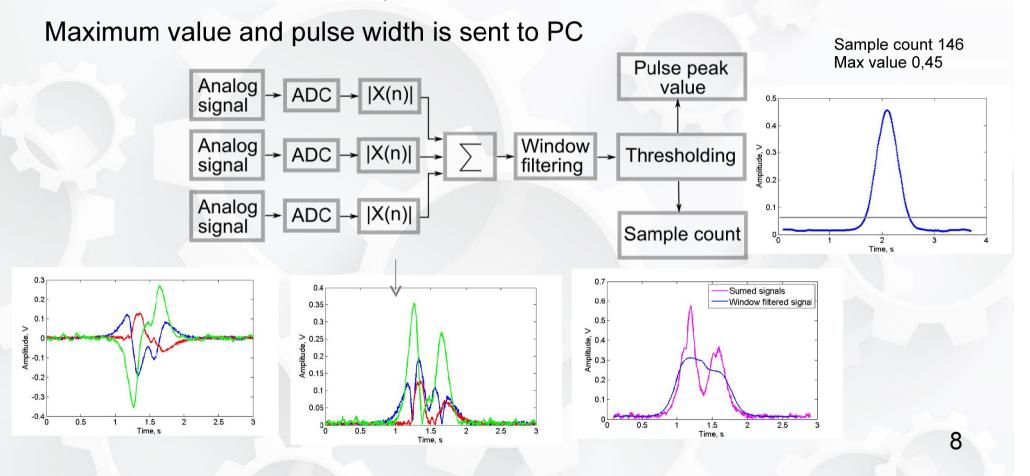
Benefits

- •Non invasive to the road surface
- Mobile solution (highly portable)
- Easy to service

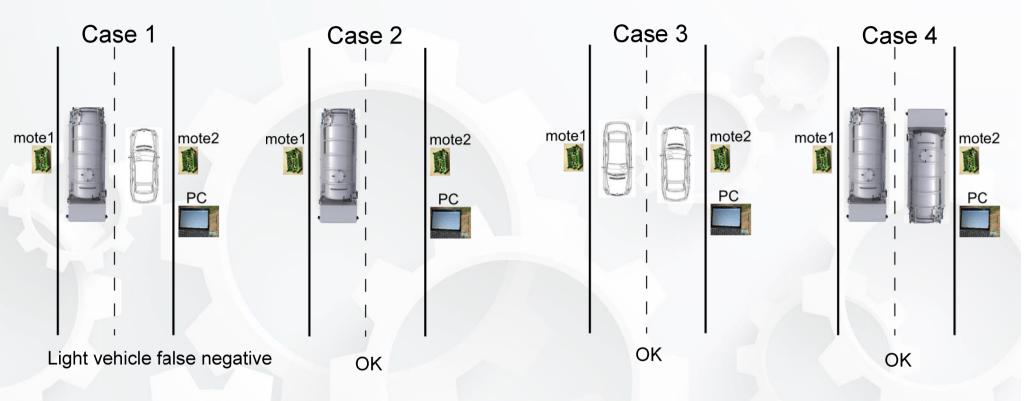

Disadvantages

- Limited vehicle classification possibility (light, heavy)
- Inaccurate speed detection

Designed system hardware I

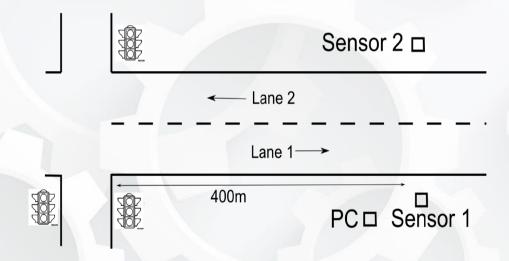


Designed system hardware II


- •3 axis magnetic sensor mote (HMC1001, HMC1002 sensors)
- •Two amplifier stage (signal gain 11950)
- Magnetic sensors demagnetizing stage (voltage boost converter, analog transistor circuit)
- •MCU MSP430f2274 micro controller
- ADC sampling frequency 208Hz
- Digital potentiometer(MAX5392)
- •Wireless data transmission Nordic NRF9E5(433MHz)

Vehicle detection algorithm (on mote)

Mote detects vehicle signature maximum value and pulse width (sample count above defined level)


Vehicle detection algorithm (on PC)

- PC receives vehicle magnetic signature pulse max value and sample count
- Software on PC compares vehicle magnetic signature data from both motes

Tests

- •Tests where performed about 400m from regulated intersection in real traffic flow outside the city
- •Sensors where placed on both sides of the two line road opposite to each other
- Ground truth data obtained from video recordings

Results

Lane 1 (Vehicle classification)			
	Hea∨y ∨ehicle	Percents	
Ground truth	388	100%	
False positive	16	4,1%	
False negati∨e	20	5,1%	
	Light ∨ehicle	Percents	
Ground truth	560	100%	
False positi∨e	35	6,2%	
False negati∨e	91	16,2%	

Lane 2 (Vehicle classification)			
	Hea∨y ∨ehicle	Percents	
Ground truth	283	100%	
False positi∨e	17	6%	
False negati∨e	7	2,47%	
	Light ∨ehicle	Percents	
Ground truth	364	100%	
False positi∨e	27	7,4%	
False negati∨e	24	6,6%	

Vehicle detection (lane 1 and lane 2)			
	Vehicle count	Percents	
Ground truth	1595	100%	
False positi∨e	8	0,5%	
False negati∨e	83	5,2%	

Conclusions

- •Proposed non-invasive vehicle counting system may be used on one or two lane roads
- •Tests show poor light vehicle detection if it follows close (less then 10 m) to heavy vehicle
- •It is hard to distinguish two or more closely one after the other traveling heavy vehicles from each other if the distance between them is smaller than 7 meters
- •Poor performance on the roads with intensive heavy vehicle flow in one of lanes at the same time with intensive light vehicle flow in opposite lane
- •Proposed system shows good performance in rural, non-urban areas where simple and non invasive solution is needed
- •System is useful in construction places as traffic light sensor or other places where traffic monitoring or intersection regulation is temporary used