

RoadMic: Road Surface Monitoring using Vehicular Sensor Networks with Microphones

Artis Mednis¹², Girts Strazdins¹², Martins Liepins¹, Andris Gordjusins¹, and Leo Selavo¹²

¹ Institute of Electronics and Computer Science,

14 Dzerbenes Str, Riga, LV 1006, Latvia

² Faculty of Computing, University of Latvia,

19 Raina Blvd., Riga, LV 1586, Latvia

{artis.mednis,girts.strazdins,martinsl,andris.g,selavo}@edi.lv

ESF grants: 2009/0219/1DP/1.1.1.2.0/APIA/VIAA/020
R&D Center for Smart Sensors and Networked Embedded Systems 2009/0138/1DP/1.1.2.1.2/09/IPIA/VIAA/004
Support for Doctoral Studies at the University of Latvia

Research area and motivation

- Five levels of car driving
 - manual driving
 - assisted driving (our primary research area)
 - semi automatic driving (our secondary research area)
 - highly automatic driving
 - fully autonomus driving

- Parties interested in road surface monitoring
 - car users
 - personal cars
 - public transportation
 - road maintainers

State of the art

- Scientific projects (data acquisition)
 - BikeNet (Dartmouth College)
 - Pothole Patrol (MIT)
 - SoundSense (Dartmouth College)
 - Nericell (Microsoft Research India)

specific hardware components (accelerometers)

- WEB resources (data presentation)
 - http://potholes.co.uk
 - http://bedrukarte.lv

manual data reporting (WEB forms)

Research problem

 What data quality in terms of road surface quality could be achieved by recording and processing sound in a moving vehicle using regular off the shelf audio microphones?

 Is this approach generic and usable for diverse event detection using different sensors?

System requirements

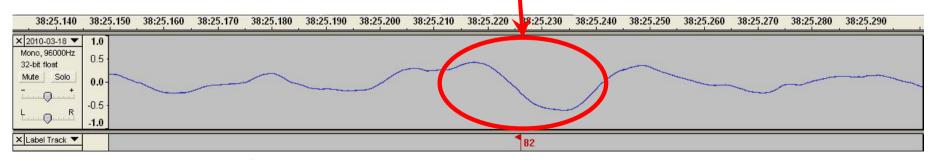
- Low setup and maintenance costs
- Availability of used hardware components
- General-purpose computer for data logging
- Wide range of supported sensors in addition to the microphone
- Localization service for data geo-tagging
- Software platform independence

Vehicle on-board sensing system architecture

Algorithm

		Mandatory	Online
•	Record GPS trace and sound simultaneously	~	V
•	Interpolate position between two GPS fixes, which typically have a granularity of one second	×	×
•	Discretize the sound signal with lower frequency to reduce sample count, high frequencies usually contain no information and can be discarded as noise	×	×
•	Assign geographical coordinates for sound fragments, which also represent a small geographical region	✓	X
•	Perform event detection function for each region, using digital signal processing (DSP) which is specific for each class of events	~	X
•	Create map with points of interest representing detected events	~	X

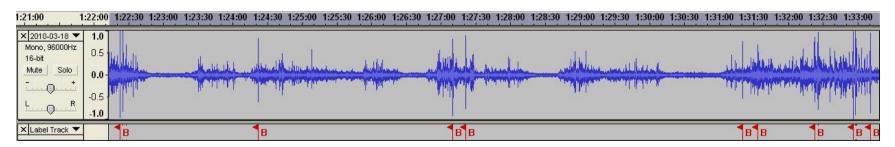
Setup



Evaluation I

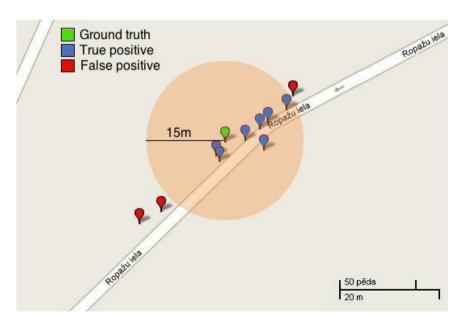
- Hypothesis
 - recorded sound has a correlation with road surface irregularities
- First impression
 - particular road segment with pothole
 - sound recorded while driving along it
 - footprint of high amplitude of low frequency oscillations

First examined road segment with pothole

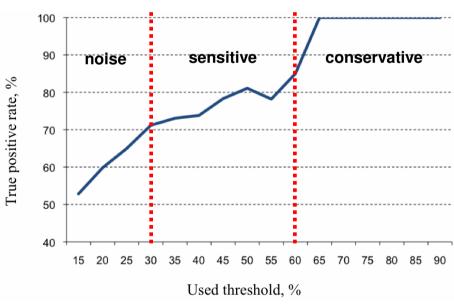

Sound of test segment with pothole position marked

Evaluation II

- Ground truth
- Five rough classes
 - large potholes (3)
 - small potholes (18)
 - pothole clusters (30)
 - drain pits (29)
 - gaps (25)
- Ten test drives
- Thresholding by amplitude

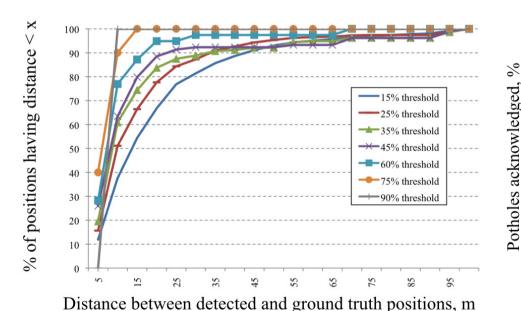

Experimental test track, 4.4km long, with manually marked road roughs

Sound of one test lap with detected pothole positions using 50% threshold


Evaluation III

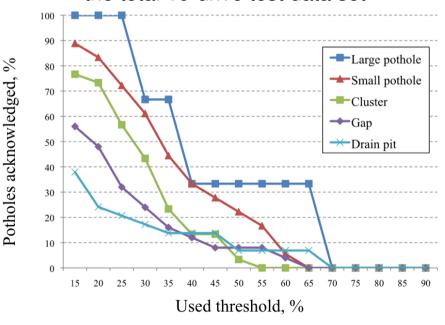
- Accuracy limitations
 - GPS precision
 - car speed

Pothole positions detected using sound analysis around position marked as ground truth. Positions not further than 15m are considered true positives


- Different threshold levels
 - noise (<30%)
 - sensitive (30-60%)
 - conservative (>60%)

True positive rate by each threshold. Thresholds above 60% give 100% true positives

Evaluation IV


 distances between detected and ground truth positions

Distribution function of distances between detected positions and ground truth, using thresholds 15-90%. Thresholds above 30% give < 20m accuracy with > 80% credibility

acknowledgement criterion:

 ground truth position is considered as acknowledged by our algorithm if it has at least 4 true positives in the total 10-drive test data set

Fraction of ground truth potholes acknowledged by our algorithm, using different thresholds for sound signal analysis

- Thank you for your attention!
- Some pictures from our field experiments:

Example of pothole cluster

Configuration before test drive

This is NOT a pothole ©

Now it is time for questions and discussion...