
Journal of Network and Computer Applications 168 (2020) 102770

Contents lists available at ScienceDirect

Journal of Network and Computer Applications

journal homepage: www.elsevier.com/locate/jnca

Energy-efficient activity recognition framework using wearable
accelerometers

Atis Elsts a,b,∗, Niall Twomey b, Ryan McConville b, Ian Craddock b

a Institute of Electronics and Computer Science, 14 Dzerbenes St., LV-1006, Riga, Latvia
b Department of Electrical and Electronic Engineering, University of Bristol, 1 Cathedral Square, Bristol, BS15DD, UK

A R T I C L E I N F O

Keywords:
Feature selection
Activity recognition
Wearables

A B S T R A C T

Acceleration data for activity recognition typically are collected on battery-powered devices, leading to a trade-
off between high-accuracy recognition and energy-efficient operation. We investigate this trade-off from a feature
selection perspective, and propose an energy-efficient activity recognition framework with two key components:
a detailed energy consumption model and a number of feature selection algorithms. We evaluate the model and
the algorithms using Random Forest classifiers to quantify the recognition accuracy, and find that the multi-
objective Particle Swarm Optimization algorithm achieves the best results for the task. The results show that by
selecting appropriate groups of features, energy consumption for computation and data transmission is reduced
by an order of magnitude compared with the raw-data approach, and that the framework presents a flexible
selection of feature groups that allow the designer to choose an appropriate accuracy-energy trade-off for a
specific target application.

1. Introduction

Internet of Things (IoT) networks and applications have gained
tremendous popularity in the recent years (Sengupta et al., 2020;
Kassab and Darabkh, 2020). This includes applications of wearable
devices (McGhin et al., 2019).

Acceleration data from wearable devices are widely used for human
activity recognition applications in healthcare (Qi et al., 2017; Hadjidj
et al., 2013), fitness (Bajpai et al., 2015), long-term behavior monitor-
ing (Woznowski et al., 2017) and other areas. Their typical application
uses a multistage process: after segmenting and filtering the raw sensor
data, a number of statistical features are computed and then used as
inputs for a machine learning classifier. Wearable devices are battery
powered; they have limited energy budgets, and the balance between
high accuracy and energy-efficient operation is important.

Wearable-based behavior monitoring studies often require a pro-
longed collection of data. Many commercial wearables require frequent
recharging, but activity recognition systems for clinical or research pur-
poses may not have the luxury of users that conform to a strict and
cumbersome device-charging schedule. For elderly or ill people, the
requirement to frequently recharge their devices may even be uneth-

∗ Corresponding author. Institute of Electronics and Computer Science, 14 Dzerbenes St., LV-1006, Riga, Latvia.
E-mail address: atis.elsts@edi.lv (A. Elsts).

ical. It is natural for designers of human activity recognition systems to
ask these key questions:

• Given a specific target activity recognition accuracy, for what max-
imum time wearables can be deployed before they need to be
recharged?

• Given a specific target deployment time, what is the maximum accu-
racy obtainable without recharging wearables during the deploy-
ment?

Contributions. This paper proposes a system (Fig. 1) that helps to
be answer these questions. It is a framework for finding groups of fea-
tures that have approximately optimal energy-accuracy trade-offs for
a specific target application (i.e., classification of human activities of
daily living) on a specific target platform. The framework consists of an
energy model that describes the energy costs of feature extractions and
transmissions together with a feature selection algorithm that optimizes
both for accuracy and energy efficiency. It uses training data collected
from a previous study or from pilot experiments, a set of candidate
platform, and a hardware platform model as inputs, and produces the
approximate Pareto-optimal front of non-dominated feature groups as
the output. Our specific contributions are:

https://doi.org/10.1016/j.jnca.2020.102770
Received 1 October 2019; Received in revised form 7 May 2020; Accepted 7 July 2020
Available online 22 July 2020
1084-8045/© 2020 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.jnca.2020.102770
http://www.sciencedirect.com/science/journal/
http://www.elsevier.com/locate/jnca
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jnca.2020.102770&domain=pdf
mailto:atis.elsts@edi.lv
https://doi.org/10.1016/j.jnca.2020.102770

A. Elsts et al. Journal of Network and Computer Applications 168 (2020) 102770

• We present a novel feature energy model that accounts for inter-
dependencies between features to better estimate the energy con-
sumption in the feature extraction process.

• We evaluate a number of feature group selection algorithms for the
application domain.

• We present evidence about the suitability of the Particle Swarm
Optimization (PSO) algorithm, which we implement it in two dif-
ferent versions: as a multi-objective and as a single-objective opti-
mization problem.

Prototype system and results. This paper assumes a setup where
the sampling, preprocessing and feature extraction are done on the
device, and the resulting features are wirelessly transmitted to a central
system. We implement a C library for on-board feature extraction, run it
on an ARM Cortex-M3 device, and measure the feature extraction time
to estimate energy consumption. The energy consumption model as well
as three different datasets are used as inputs to the feature group selec-
tion algorithms. The evaluation scores the results in two dimensions:
first, charge consumption for feature computation and transmission;
second, the F1 score for activity recognition. It compares the Pareto-
optimal fronts selected by the PSO algorithms with those selected by
methods from our previous work (Elsts et al., 2018a): greedy search
and mutual information (MI) based search. We evaluate the proposed
system for classification of human activities of daily living with a Ran-
dom Forest classifier, and compare the accuracy of the PSO algorithms
with our previous work (Elsts et al., 2018a). The PSO algorithms pro-
duce results that are closer to optimum than the alternatives, and the
multi-objective PSO also finds the highest number of points on the front.
The feature selection is assumed to be done offline, before the deploy-
ment of the data collection and feature extraction code, so that after
running the feature group selection algorithms the desired features can
be directly encoded in the deployed software.

Compared with our previous work (Elsts et al., 2018a) the present
research adds selection of feature groups instead of merely evaluating
individual features. We extend the feature extraction code from Elsts
et al. (2018a) with feature groups, several new features, and generic
transforms and filters. Furthermore, we add the complete energy model,
and describe how the system can be used to construct a practical feature
extraction framework.

Summary of the paper. The paper first surveys the related work
(Section 2). Subsequently it presents the energy model (Section 3) and
the feature group selection algorithms (Section 4). The evaluation of the
framework is given in Section 5, and application examples in Section 6.
Finally, the paper ends with conclusions (Section 7).

Nomenclature
F1 Precision and recall based measure of a test’s accuracy
BLE Bluetooth Low Energy
CBOR Concise Binary Object Representation
HAR Human Activity Recognition
IoT Internet of Things
MI Mutual Information
PAMAP Physical Activity Monitoring for Aging People
PSO Particle Swarm Optimization
RF Random Forest
SMA Signal Magnitude Area
SPHERE Sensor Platform for Healthcare in a Residential Environment
SPW-2 SPHERE Wearable 2
UCI University California Irvine

2. Related work

Activity Recognition. Accelerometer is a core sensor for human
activity recognition (Janidarmian et al., 2017; Twomey et al., 2018).
Even though the recognition accuracy can be improved by using mul-
tiple accelerometers at different locations on the body, good results for

coarse-grained activities can be obtained just from a single, typically
wrist-worn device (Maurer et al., 2006) – a setup that we assume in
this paper.

Activity detection using deep learning can achieve state-of-the-art
accuracy (Wang et al., 2018). However, deep learning is not suitable for
the ultra-low energy consumption Class-1 IoT devices (Bormann et al.,
2014) our system targets; instead, it typically targets smartphone-class
devices (Possas et al., 2018) and beyond. The work by Lane et al. on
deep learning for ARM Cortex-M is one exception from this trend; how-
ever, they admit that “work remains to make deep models of this scale
completely practical” as they cannot be executed in real time (Lane et
al., 2017).

Energy Efficiency in Activity Recognition. Energy efficiency has
been a major research goal for the community, as well as a driver for
Edge Computing – the trend where computation moves away from the
cloud and closer to the data-producing devices (Satyanarayanan, 2017).
Our work is an instance of the Edge Computing paradigm.

In most of the related work, the accuracy-energy trade-off is not
explicitly defined; rather, the strategy is to achieve subjectively “good-
enough” accuracy while optimizing the energy usage (Yan et al., 2012;
Gordon et al., 2012; Liang et al., 2014). As a result the minimal accu-
racy threshold is hidden in the details in the proposed systems. By being
explicit and not forcing a single threshold value, our work achieves bet-
ter transparency and flexibility.

Yan et al. (2012) propose to optimize sampling rate and classifica-
tion features on mobile phones separately for each activity, in a real-
time, adaptive fashion. The system proposed in our paper can be applied
to select the features for a single, specific activity or a subgroup of activ-
ities, serving as a building block in their approach.

Another approach is to decide which sensors can be turned off with-
out losing a lot accuracy. Gordon et al. (2012) optimize sensor usage
based on prediction of future activities. Similarly, in case of multiple
sensor devices, some of them can be delegated to “backup” status, thus
saving the energy spent by the whole system (Elsts, 2016). Again, these
approaches can complement the feature-selection system of this paper.
Trivially, a sensor can be turned off if no features use the data pro-
duced by this sensor; the energy saved by that would be captured by
the platform’s energy model.

Hierarchical activity recognition is another natural extension. For
example, Liang et al. (2014) propose a hierarchical recognition algo-
rithm that only computes the more expensive frequency domain fea-
tures when the activity cannot be reliably classified by time domain
features. Zheng et al. (2017) show that a hierarchical classifier allows
to reduce the sampling frequency several times while maintaining “high
accuracy”. Hierarchical classifiers are beyond the scope of the present
paper, however, we aim to generalize the results for this in our future
work.

Feature Extraction. In terms of feature extraction on low-power
embedded devices, we build on our previous work (Elsts et al., 2018a).
We extend the work by adding the notion of generalized transforms in
the feature extraction stage. We also add a number of new features, and
drop those features that showed bad energy-accuracy trade-off in our
previous work.

Feature Selection. We build on the extensive existing work in fea-
ture selection (Miao and Niu, 2016) and experiment with both wrap-
per and filter methods (Guyon and Elisseeff, 2003). The particle swarm
optimization method (Kennedy, 2011a) has been previously proposed
for feature selection (Xue et al., 2013). That includes the multi-objective
optimization that relies on nondominated sorting (Srinivas and Deb,
1994). However, the energy costs of the recognition are typically not
quantified in detail; frequently, existing works use the number of fea-
tures as a proxy for cost (i.e., energy consumption); see (Cilla et al.,
2009; Emmanouilidis et al., 2000) for examples. In this paper, we pro-
vide a detailed energy model for computing the cost of feature groups.

Accuracy-Energy Trade-Offs. One typical way to investigate the
trade-off for the target application is to compare off-node and on-node

2

A. Elsts et al. Journal of Network and Computer Applications 168 (2020) 102770

Fig. 1. Overview of the proposed system.

activity recognition schemes (Wang et al., 2013). Our work falls in
between these two extreme approaches: while the recognition is done
off-node, the software one the node is optimized in an application-
specific way to extract only the features that are required by the appli-
cation.

Chu et al. propose a system for multi-objective optimization of
mobile sensor classifiers (Chu et al., 2011); while the Pareto-optimal
offline optimization approach is the same as used in our paper, we
operate at the level of feature groups, rather than classifiers. Similarly,
Jensen et al. propose a method for approaching the accuracy-cost con-
flict by choosing an appropriate classifier (Jensen et al., 2016); how-
ever, they ignore the feature selection step, as well as abstract away
from the target hardware instead of using an empirical energy model.

3. Energy model

3.1. Features, transforms, and filters

Let us denote the vector of the raw samples with s = (s1, s2,…, sn),
where si ∈ ℝ. Normally, acceleration data is three dimensional,
i.e., there are three vectors sx = (x1, x2,…, xn), sy = (y1, y2,…, yn), sz =
(z1, z2,…, zn) corresponding to acceleration in the three spatial dimen-
sions.

In a preprocessing stage, the data is segmented in windows. Assum-
ing window size w and processing interval k, the j-th window of the
input data is the vector W(s)j = (sj·k, sj·k+1,…, sj·k+w−1). If k < w, the
neighboring windows overlap each another.

Features, transforms and filters are functions that act on the raw data,
either on a single dimension separately or the vector of the three spatial
dimensions. The difference between a them is that a feature f is calcu-
lated once per window (f ∶ ℝw → ℝ or f ∶ ℝ3w → ℝ), while a transform
or a filter t creates an output value for every input value (t ∶ ℝ → ℝ or
t ∶ ℝ3 → ℝ). The difference between the transform and a filter is that
a transform does not lose information and is reversible. For simplicity,
in some occasions in this paper we use the term “transform” to denote
any function that conforms to the output value criteria above.

3.2. Feature preselection

The list of candidate features is given in Table 1. We also introduce
a number of transforms and filters (Table 2) that preprocess the data
before the feature extraction. For example, transforming the data with
the magnitude squared function makes it more robust to rotations of the
wearable compared with computing features of each axis separately.
(Note that the list does not include the magnitude filter. It was deemed
too expensive, since it requires to compute a square root operation for
each (xi, yi, zi) sample.) All data is first passed to a median-of-three filter
to de-noise it. This filter is assumed to be always enabled, and as such
not handled by the group selection process.

The results in Elsts et al. (2018a) show that for recognition of a
limited set of coarse-grained activities of daily living (such as walking,

Table 1
Features.

Feature Definition

Mean 𝜇s =
1
w

∑w
i=1 si

Minimum min(s)
Maximum max(s)
First Quartile sorted(s)w/4
Median sorted(s)w/2
Third Quartile sorted(s)3w/4
Inter-quartile range sorted(s)3w/4 − sorted(s)w/4
Energy Es =

1
w

∑w
i=1 (si)2

Standard Deviation
√

Es − (𝜇s)2

Correlation C(su , sv) =
∑w

i=1 (ui−𝜇u)(vi−𝜇v)√∑w
i=1 (ui−𝜇u)2

∑w
i=1 (vi−𝜇v)2

Entropy −∑w
i=1 P(si) log P(si)

Table 2
Transforms and filters.

Transform/Filter Definition

Median-of-three median(si−1, si, si+1)
Jerk si − si−1
L1 norm abs(xi) + abs(yi) + abs(zi)
Magnitude squared x2

i + y2
i + z2

i

standing, sitting, and lying) simple time-domain features have the best
energy-accuracy trade-offs. Inspired by those results, we only use time-
domain features for this paper, eschewing the need to run the Fourier
transform or other similar transforms on the device to obtain frequency-
domain features. To make it clear, this pre-selection is done because of
pragmatic reasons; the approach described further in this paper is not
limited to the specific functions we are using.

Floating-point arithmetic is used to compute the standard deviation,
correlation between axis, energy and entropy. The remaining features,
including the mean, use only fixed-point arithmetic.

We note that the final list of features includes time domain features
typically used in published research in this field, even if occasionally
under different names. For example, the “𝜅 feature” defined and used
by Wang et al. (2013) is included implicitly: as mean computed on the
jerk-transformed data in its normalized version. The Signal Magnitude
Area (SMA) feature (Janidarmian et al., 2017) is also included implic-
itly, as the mean computed on the L1 norm.

In further analysis, we assume that all features are computed on all
three axis (x, y, z) of acceleration data, where applicable. The inter-axis
correlation feature is computed for all three pairs of axis (xy, xy and
yz).

3

A. Elsts et al. Journal of Network and Computer Applications 168 (2020) 102770

Fig. 2. Features under consideration and their inter-dependencies. Labeled in italic: intermediate results that are included in the energy model, but not in the feature
group selection stage.

3.3. Energy costs

Let us define the cost of 𝔣, where 𝔣 is a function that is either a feature
or a transform, as the energy needed to iteratively compute the function
on a single window W of samples (W ∈ ℝ3w or W ∈ ℝw).

Features and transforms can be combined; for example, one can first
transform the data using the jerk transform, then transform the result
using the magnitude squared transform, then segment the data and cal-
culate the standard deviation of each segment. More generally, the com-
binations of any two different transforms ti and tj yields two new trans-
forms ti(tj(s)) and tj(ti(s)) in our model. Similarly, any transform t can
be combined with any feature f to yield a new feature f(t(s)).

Multiple features cannot be combined in this general way; however,
one can notice that there are directional dependencies between some of
the features. For example, to calculate the standard deviation, one must
calculate the mean. Therefore if both the standard deviation and the
mean are included in a group of features, then their total calculation
cost is equal to the calculation cost of the standard deviation, not the
sum of the costs of these two individual features. In Section 3.4 we
describe such an optimized implementation, and use it further in the
paper.

More generally, if f1 and f2 are features that both use an intermedi-
ate result 𝔤, where 𝔤 is either a feature or a transform, then the cumu-
lative cost of the feature set {f1, f2} is:

cost({f1, f2}) = cost(f1) + cost(f2) − cost(𝔤) (1)

In the special case when the intermediate result 𝔤 is equal to one of the
features f1 or f2:

cost({f1, f2}) = max(cost(f1), cost(f2)) (2)

Let us generalize Eq. (1). First, let us assume that the energy cost of a
set {f1,…, fm} of features and transform is already known and equal to
cm, and that the task is to add a new feature fm+1 to this set that uses
some intermediate result 𝔤 that is already computed. Then the cost of
the combined set is:

cm+1 = cost({f1,… , fm+1}) = cm + cost(fm+1) − cost(𝔤). (3)

This approach is used to iteratively compute the cost of a set of fea-
tures using their individual costs (Section 3.5) for the target hardware
platform (Section 3.4) using the dependencies shown in Figs. 2 and 3.

3.4. Example hardware platform

3.4.1. Platform description
We evaluate the cost of the on-board feature extraction on SPW-2

(Fafoutis et al., 2017) (Fig. 4), an embedded hardware platform based

Fig. 3. Transforms and filters applied to the raw data.

Fig. 4. SPW-2: ARM Cortex-M3 based wearable accelerometer platform
(Fafoutis et al., 2017).

on ARM 32-bit Cortex-M3 core. Its limited RAM and program memory
size (20 kB and 128 kB, respectively) and CPU speed (48 MHz) do not
allow to run high-complexity algorithms. However, the System-on-Chip
has a 2.4 GHz ultra-low power wireless radio for data transmission.

3.4.2. Computation
We implement the feature extraction as a stand-alone library.1 The

library is written in C programming language; the code is fully compati-
ble with the C99 language standard and portable, as it does not contain

1 Available at https://github.com/atiselsts/feature-group-selection.

4

https://github.com/atiselsts/feature-group-selection

A. Elsts et al. Journal of Network and Computer Applications 168 (2020) 102770

Table 3
Charge consumption for feature extraction on the SPW-2 wearable platform.

Feature/transform/filter Cost CPU time Avg. current (at 50 Hz)
(per 128 sample window)

Mean 0.026 μC 6.8μs 0.067 μA
Minimum 0.026 μC 6.8μs 0.067 μA
Maximum 0.026 μC 6.8μs 0.067 μA
First quartile 0.064 μC 16.8μs 0.165 μA
Median 0.064 μC 16.8μs 0.165 μA
Third quartile 0.064 μC 16.8μs 0.165 μA
Inter-quartile range 0.070 μC 18.2μs 0.179 μA
Energy 0.032 μC 8.4μs 0.083 μA
Standard deviation 0.035 μC 9.2μs 0.090 μA
Correlation 0.067 μC 17.3μs 0.170 μA
Entropy 0.257 μC 66.9μs 0.659 μA

Median-of-three 0.033 μC 8.6μs 0.085 μA
L1 norm 0.034 μC 8.9μs 0.088 μA
Magnitude squared 0.029 μC 7.6μs 0.075 μA
Jerk + L1 norm 0.047 μC 12.2μs 0.120 μA
Jerk + Magnitude sq. 0.048 μC 12.5μs 0.123 μA

Empty for loop 0.010 μC 3.2μs 0.032 μA

Table 4
Charge consumption for transmission on the SPW-2 wearable platform.

Feature Cost per window (128 samples) Avg. current (at 50 Hz)

Mean 0.89 μC 2.29 μA
Minimum 1.02 μC 2.60 μA
Maximum 1.17 μC 3.00 μA
First quartile 1.02 μC 2.60 μA
Median 1.02 μC 2.60 μA
Third quartile 1.02 μC 2.60 μA
Inter-quartile range 0.84 μC 2.16 μA
Energy 1.49 μC 3.81 μA
Standard deviation 1.49 μC 3.81 μA
Correlation 1.49 μC 3.81 μA
Entropy 1.49 μC 3.81 μA

Raw data 31.46 μC 80.54 μA

any ARM Cortex specific functionality. To approximate the energy cost
of computing each feature, we experimentally evaluate it on the SPW-
2. To achieve that, the library is linked with the Contiki-NG operating
system.2

The evaluation of the library consists of performance measurements
of 15 000 samples of real 3-axial acceleration data samples, taken from
the SPHERE Challenge dataset. For each function, we measure the time
it takes to segment the samples in 128-sample windows with 50%
overlap and compute that feature for each window. This window size
and overlap has been shown to give good results in previous research
(Janidarmian et al., 2017; Twomey et al., 2018).

The evaluation results consist of timing measurements that capture
the time required to compute each feature. The features are computed
on data that is scaled to the range of 8-bit signed integer. As the active-
mode current consumption of the SPW-2 platform (Fafoutis et al., 2017)
is constant, the time taken for the computation accurately corresponds
to the charge consumption of the microcontroller. We use the electric
charge as the main metric, rather than energy (charge times voltage).
The CC2650 System-on-Chip has high dynamic range of voltage (from
1.8 to 3.8 V); the exact number is a platform-specific value not relevant
to the optimization goals of this paper.

The C library contains both the implementation of individual fea-
tures and the implementation of feature groups, such as the group
{mean, standard deviation}. The latter is implemented separately, as a
group. It is more efficient that way since these features are interdepen-
dent. Specifically, both features require the computation of the sum of

2 http://contiki-ng.org/.

samples in each window. The inter-dependencies from Fig. 2 are used
to decide which feature groups to implement in this combined way.

Note that each feature requires to process the data in a for loop. We
assume that in an optimized implementation to extract a specific group
of N features, there would be just one for loop. To accurately evaluate
the cumulative charge consumption of this group from our experimental
data, we need to sum their individual costs and then subtract the cost
of the empty for loop multiplied by N − 1 (see Eq. (3)).

3.4.3. Data transmission
The CC2650 System-on-Chip supports two radio modes: BLE (Blue-

tooth Low Energy) and IEEE 802.15.4. As a result, we select IEEE
802.15.4 for our transmission model.

We use a model that assumes a 50% overhead. That is, the model
assumes that in order to transmit one byte of application-layer pay-
load, two bytes need to be transmitted in total. This accounts for packet
header overhead, for ACKs, and for occasional retransmissions of com-
plete packets.

To calculate the amount of the application data to transmit, the
results of the feature extraction algorithm are encoded in an effi-
cient way. For integers, CBOR (Bormann and Hoffman, 2013) encod-
ing is used, while for floating point numbers: their size reduced to
16 bits. Finally, to estimate the charge consumption, we measured the
transmission-mode current of the target platform. When the transmis-
sion output power is set to 5 dBm, it is approximately 12.0 mA.

3.5. Model instantiation for the example hardware platform

Table 3 and Table 4 show the instantiation of the charge consump-

5

http://contiki-ng.org/

A. Elsts et al. Journal of Network and Computer Applications 168 (2020) 102770

Fig. 5. Extraction time for features and transforms.

tion model. Fig. 5 graphically displays the feature extraction time from
Table 3. The charge consumption costs are given for a single axis of
acceleration data. In general, it is more than an order of magnitude
cheaper to compute a feature than to transmit the result of the com-
putation. The only exception is the entropy feature. Transmission of the
raw data unsurprisingly is another order of magnitude more expensive,
since it means sending 64 measurements per each window instead of
sending just one value.

4. Feature group selection methodology

4.1. Preliminaries

In contrast to single-objective optimization that optimizes over
scalars, multi-objective optimizes over vector-valued functions. These
optimization problems take the following general form:

min (f1 (x) , f2 (x) ,… , fk (x))

s.t. x ∈ ,

in which the k functions to be optimized are denoted as fi (with
1 ≤ i ≤ k), and is the feasible set of solutions.

A key concept within multi-objective domain is that of dominant
solutions. A solution x1 ∈ is said to dominate another solution x2 ∈
 if:

1. fi(x1) ≤ fi(x2)∀ i(1 ≤ i ≤ k); and
2. fi(x1) < fi(x2) at least once.

This important property means that x1 is never worse than x2. If
a solution x∗ ∈ dominates the set ⧵ {x∗}, then x∗ is said to be
Pareto optimal. Pareto optimality is noteworthy since the performance
of any single objective at a Pareto optimal solution cannot be improved
without compromising performance on the other objectives.

The set of Pareto optimal solutions is called the Pareto front and it
establishes the relationship between a set of Pareto optimal solutions
and a set of operating contexts. In this work, the power budget for fea-
ture representation calculation defines the operating context. In other
words, with access to the Pareto front, feature representations can be
adjusted depending on the power budget. Typically, the front will be
calculated offline and deployed to the embedded device. The compu-
tational expense required to calculate the Pareto front is the primary
reason for this, however, the resulting model is trivial to evaluate on
embedded devices.

4.2. The multi-objective optimization problem

The optimization problem in the context of this work is defined as:

minimize (−a(f), e(f)) (4)

subject to ‖f‖ > 0, (5)

where f is a set of feature vectors, a(f) is the classification accuracy
given f, and e(f) is the energy cost to compute and transmit f . The solu-
tion of this optimization problem is the Pareto front of k non-dominated
sets of feature vectors f (1), f (2),…, f (k). The granularity of the solution
is the number k.

Within this work, we are concerned with two objectives (i.e. k = 2):
high predictive accuracy, and low power consumption for data repre-
sentation. Taking into account all features and their combinations with
the different transforms (Section 3), there are 54 total feature vectors
under consideration. Since the number of subsets in a 54-element set
is very large, it is not possible to apply a brute force algorithm to find
the nondominated subsets of feature vectors. If more features such as
frequency domain features are added, the need to reduce the computa-
tional complexity of the search becomes even stronger. Note that some
of the features are three-dimensional vectors, e.g., mean, when com-
puted on a segment of the raw data, results in the triple (meanx, meany ,
meanz). If these were separated along the three axis, that would improve
the granularity of the results, but also massively increase the number of
the features and thus the search space.

4.3. Activity recognition classifier

We use the Random Forest classifier to evaluate the accuracy. The
general approach described in this paper is not specific to any particular
classifier; we selected the Random Forest because it is computationally
inexpensive and robust, and has shown good results in a wide range
of applications. Furthermore, the features do not need to be normalized
when the Random Forest is used; this reduces the computation required
for feature extraction. The classifier is implemented using the scikit-
learn library. The number of trees is set to 100 (the default for version
0.22), and the class_weight parameter set to “balanced” to handle
skewed class distributions.

4.4. Selection algorithms

Feature selection methods are categorized in wrapper, filter, and
embedded methods (Guyon and Elisseeff, 2003). The first treats the
problem as a black box, the second uses a pre-processing step inde-
pendent of the classifier, and the third uses information specific to the
classifier. We compare a number of wrapper methods: greedy search
and PSO based search, as well as one filter method: mutual information
based selection. In terms of embedded methods, the feature importances
in the Random Forest is a potential candidate. However, the splits in the
decision tree construction process are selected in a way that maximizes
information gain. Therefore, the results of selecting by feature impor-
tances are going to be the same as when selecting by MI.

4.4.1. Greedy search
The idea of the greedy search is to start with an empty set of selected

features, and then add a single highest-scoring feature in each step.
The performance of a candidate group of features f is measured by
training a Random Forest classifier on the training data and evaluating
its accuracy on the validation data. The measurement score S linearly
combines the F1 score of this evaluation with the energy consumption
E of the group f :

S = WEE + WAF1, (6)

6

A. Elsts et al. Journal of Network and Computer Applications 168 (2020) 102770

The weights WA and WE are selected to scale the accuracy
and energy metrics to similar amplitude and the same direction:
WA = −500WE. Energy is a large number that needs to be minimized,
and F1 score needs to be maximized, subject to 0.0 ≤ F1 ≤ 1.0. Once a
feature is selected, it is never removed from the set. See the Algorithm 1
for the details.

4.4.2. Mutual information based selection
Mutual information (MI) is a statistical measure between two ran-

dom variables X and Y that quantifies the reduction in uncertainty
about one random variable given knowledge of another. High MI indi-
cates a large reduction in uncertainty. Hence, MI measures the reduc-
tion in uncertainty about the classification target Y given a feature
X. More formally, given discrete random variables X and Y, the MI
between them is:

I(X;Y) =
∑
y∈

∑
x∈

p(x, y) log
(

p(x, y)
p(x) p(y)

)
(7)

where p(x, y) is the joint probability distribution function of X and Y,
and p(x) and p(y) the marginal probability distribution functions of X
and Y.

In the MI based selection, all features are initially ranked accord-
ing to their MI with the classification target classes. Then, the highest
ranking features are one-by-one added to the candidate set, until a pre-
determined number of features have been chosen (Algorithm 2). This is
a filter based method; in contrast to the greedy search, it does not use
information from classification results to guide the search.

4.4.3. Particle swarm optimization based search
The Particle Swarm Optimization (PSO) is a global stochastic opti-

mization method. It uses a population of candidate solutions (parti-
cles). The position of a particle is defined as the n-dimensional vector
describing the particles coordinates in the search space. The velocity is
another n-dimensional vector describing the rate of change of the posi-
tion. The PSO algorithm is iterative; in each iteration it updates the
particles according to simple mathematical rules based on the particles’
positions and velocities.

The PSO algorithm is a popular meta-heuristic method for solving
nonlinear optimization problems, including feature selection (Xue et
al., 2013). It is suitable for searching in a very large space of candidate
solutions, and does not require the optimization function to be differen-
tiable. However, as with other stochastic optimization methods, PSO is
not guaranteed to find the global optima. It may also take a long time
to converge.

For the purposes of this paper, we define the search space as the
power set of the candidate features. Elements of the particle’s position
vector can take values from 0.0 to 1.0. If the value of a position element
xi is greater than the THRESHOLD constant, the i-th feature is defined
as selected by the particle; THRESHOLD = 0.9 in our implementation
to bias the search towards sparser selections.

We implement two versions of the PSO search:

Table 5
PSO algorithm parameters (from
Xue et al. (2013)).

Parameter Value

Maximum Iterations 100
Number of Particles 10 000
Inertia Weight 0.7298
Max Speed 0.6
Acceleration c1 1.49618
Acceleration c2 1.49618

• Single objective. Here the score S of a particle is a scalar, calcu-
lated as in Eq. (6). The traditional PSO algorithm is used (Kennedy,
2011b).

• Multi-objective. Here the score of a particle is 2-dimensional vector
that includes the energy and F1 score values as its elements. As tradi-
tional PSO method cannot handle multi-objective optimization, we
utilize the NSPSOFS algorithm by Xue et al. (2013). This algorithm
relies on nondominated sorting (Srinivas and Deb, 1994) to produce
the Pareto-optimal fronts in each iteration, and attempts to move
the rest of the particles towards this front. In each iteration it also
prunes the Pareto-optimal fronts by sorting its particles by crowding
(distance to neighbors) and removing 25% of the most overcrowded
particles.

Algorithm 3 shows the details how the PSO methods are incorpo-
rated in the feature group selection process. Table 5 lists configuration
parameters of the PSO algorithm; the weight, speed and acceleration
parameters are taken from Xue et al. (2013). For a detailed explanation
of the PSO algorithms, in particular the multi-objective version, we ask
the reader to consult (Xue et al., 2013).

4.5. Datasets

The PAMAP2 Dataset (Reiss and Stricker, 2012) contains data of
multiple physical activities performed by 9 subjects wearing 3 inertial
measurement units (over the wrist on the dominant arm, on the chest,
and on the dominant side’s ankle) and a heart rate monitor. In this
paper, we use the data of their 12 “protocol” activities: lying, sitting,
standing, ironing, vacuum cleaning, ascending stairs, descending stairs,
walking, Nordic walking, running, and rope jumping. Data were sam-
pled at 100 Hz in this work and we use only the accelerometer data,
although magnetometer and gyroscope data are also available.

The UCI HAR Dataset (Anguita et al., 2013) was collected by attach-
ing a smart-phone (with accelerometer and gyroscope) in a waist-
mounted holder, with 30 participants conducting 6 activities in a con-
trolled laboratory environment. Six activities were annotated in this
dataset: walking, walking up stairs, walking down stairs, sitting, stand-
ing, and lying down. The acceleration was sampled at 50 Hz on triaxial
accelerometers and gyroscopes. Since gyroscopes can consume several
orders of magnitude more power than accelerometers, we only assess
the accelerometer data in our treatment of this work.

The SPHERE Challenge Dataset (Twomey et al., 2016) contains
synchronized accelerometer, environmental and video data that was
recorded in a smart home by the SPHERE project (Zhu et al., 2015;
Woznowski et al., 2017; Elsts et al., 2018b). Three sensing modali-
ties were collected in this dataset: 1) environmental sensor data; 2)
accelerometer and Received Signal Strength Indication data; and 3)
video and depth data. Accompanying these data are annotations on
location within the smart home, as well as annotations relating to the
Activities of Daily Living that were being performed at the time. In this
work we consider only the acceleration data. Twenty activities were
annotated in this dataset, and 10 participants participated volunteered
for the challenge totaling approximately 9 h of data. In order to avoid
having to deal with missing data in this paper, we use a subset of the
dataset: the activities of six participants, each of which has < 5% of
samples missing because of lost over-the-air packets, and quantize the
readings as 8-bit integers. Only three activities from this subset have
sufficient amounts of data (>100 windows each), so we only use those
three.

4.6. Feature group selection algorithm

The feature group selection is done for each dataset independently
using this process:

1. The raw data in the dataset is preprocessed: segmented in 128-
sample windows (50% overlap).

7

A. Elsts et al. Journal of Network and Computer Applications 168 (2020) 102770

Algorithm 1 Greedy Search.

⊳ Initialization
max_cost ← energy_cost({raw_data})
selected_ features ← ∅
score = −∞
pareto_front = list()
while true do ⊳ Main loop

best_candidate_score = −∞
for f ∈ candidate_ features do

if f ∉ selected_ features then
candidate_selection = selected_ features ∪ {f}
new_score ←evaluate_energy_and_f1score(candidate_selection)
if new_score > best_candidate_score then

best_candidate_score ← new_score
best_candidate ← f

end if
end if

end for
selected_ features ← selected_ features ∪ {best_candidate}
if energy_cost(selected_ features) ≥ max_cost then

break
end if
improvement ← best_candidate_score − score
score ← best_candidate_score
pareto_front.append(selected_ features)

end while
return pareto_front

Algorithm 2 Mutual information based selection.

⊳ Initialization
max_cost ← energy_cost({raw_data})
selected_ features ← ∅
score = −∞
pareto_front = list()
MI_list = list()
while true do ⊳ Main loop

for f ∈ candidate_ features do
MI_list ← sort(calculate_MI(f, classes))

end for
for f ∈ MI_list do

selected_ features = selected_ features ∪ {f}
new_score ←evaluate_energy_and_f1score(selected_ features)

end for
if energy_cost(selected_ features) ≥ max_cost then

break
end if
pareto_front.append(selected_ features)

end while
return pareto_front

2. To each of the segments, one activity value is assigned. If at least
2∕3 of entries in that segment have a single activity the value is set
to the dominant activity code during that segment; it is set to −1
otherwise.

3. All features are calculated for each window.
4. The features of a randomly selected subject are removed from the

dataset.
5. Each feature selection algorithm is run using the features from the

main dataset as inputs and F1 scores from three-fold cross validation
as the performance metric.

6. The performance on the subject-left-out is separately measured for
each feature group. It is reported to show the generalizability of the
results.

5. Results

The results (Figs. 6–8) show the expected shape of the approxi-
mate Pareto-optimal fronts. When the charge consumption is very low,
increasing it just slightly leads to massive accuracy gains. Then the
curve has an inflection point, and the opposite becomes true: there is
just a slight increase in accuracy when new or more costly features are
added.

5.1. PSO based search

The PSO methods show the best overall energy-accuracy tradeoff.
The multi-objective shows slightly better results. However, its main

8

A. Elsts et al. Journal of Network and Computer Applications 168 (2020) 102770

Algorithm 3 PSO Based Search.

⊳ Configuration constants
NUM_PARTICLES ← 10 000

⊳ Initialization
particles ← ∅
for f1 ∈ candidate_ features do

for f2 ∈ candidate_ features do
if f1 ≠ f2 then

p ← Particle()
p.features ← list(f1, f2)
particles ← particles ∪ {p}

end if
end for

end for
while length(particles) < NUM_PARTICLES do

p ← Particle()
p.features ← random_subset(candidate_ features)
particles ← particles ∪ {p}

end while
for p ∈ particles do

p.score ← evaluate_energy_and_f1score(p.features)
end for

⊳ Optimization
run_particle_swarm_optimization(particles)

⊳ Result selection
for p ∈ particles do

p.score ← evaluate_energy_and_f1score(p.features)
end for
sorted_particle_sets ←nondominated_sort(particles)
pareto_front ← list(particle.featuresforparticle ∈ sorted_particle_sets[0])
return pareto_front

Fig. 6. Approximate Pareto-optimal fronts on the PAMAP2 dataset.

Fig. 7. Approximate Pareto-optimal fronts on the HAR dataset.

9

A. Elsts et al. Journal of Network and Computer Applications 168 (2020) 102770

Fig. 8. Approximate Pareto-optimal fronts on the SPHERE dataset.

Table 6
Datasets used.

PAMAP2 Dataset HAR Dataset SPHERE Challenge Dataset

Sampling rate 100 Hz 50 Hz 20 Hz
Number of activities 12 6 3
Number of windows 15 140 10 299 1160
Duration 5.4 h 7.3 h 2.1 h
Wearable position used wrist waist wrist

benefit is that it obtains a higher number of solutions. The multi-
objective PSO algorithm avoids crowding of particles, and as a result,
it produces a Pareto-optimal front with higher granularity. The number
of solutions it is consistently higher compared to the single objective
PSO algorithm.

5.2. Greedy search

The greedy search finds feature groups that are generally dominated
by groups found by the PSO methods. Especially if saving energy is the
main concern, the greedy search is not competitive. By its nature, the
granularity of the results is low, since each iteration of the algorithm
adds a new feature to the candidate set. However, the greedy search is
faster to execute than the PSO methods.

5.3. MI based selection

This method performs significantly worse than the others. This is

explained as it is the only one that does not consider the energy cost
in the selection process, and that it ignores the redundancy between
different high-ranking features. Untypically, this method performs bet-
ter on the test data than on validation data, for PAMAP2 and SPHERE
datasets: unlike the other methods, this method does not fit the selected
features to the validation set.

5.4. Dataset specifics

The PAMAP2 Dataset shows good match between the main dataset
and the subject left out, and is the one that most benefits from the PSO
methods. For the other datasets, the shape of the solution graph for the
subject left out is slightly more different than the shape of the graph on
the main portion of that dataset. The results on the SPHERE Challenge
Dataset (Fig. 8) in particular are more affected by randomness, as it has
fewer samples: it is an order of magnitude smaller than the other two
datasets (Table 6).

Fig. 9. Results from repeated PSO multi-objective optimizations on the HAR dataset.

10

A. Elsts et al. Journal of Network and Computer Applications 168 (2020) 102770

5.5. Repeatability

To investigate the repeatability of algorithms we select the best algo-
rithm (PSO, multi-objective version) and run it on the HAR dataset 10
times. The results (Fig. 9) show that the initial selection of energy-
efficient feature groups shows perfect repeatability, while high accu-
racy can be obtained in multiple different ways, so different groups are
selected in the different runs. The results on the subject left out set show
increased variability compared to the validation set, as the optimization
process operates with the latter.

5.6. The performance of individual features

Figs. 10 and 11 show the most frequently occurring individual fea-

Fig. 10. Ten most frequently occurring features, plotted per algorithm.

tures. These figures exclude the results from the MI based search, as
they were generally much worse than the other methods and did not
take into account the energy cost.

The results show that there are no universally good features: no sin-
gle feature shows up in all six different graphs. Each activity recogni-
tion application benefits from slightly different features. Furthermore,
many of the features have high correlations with other features, there-
fore can be replaced with the other features at least for some of the
applications. (It is worth noting that redundancy or very high corre-
lation between features does not mean that they are always mutually
replaceable (Guyon and Elisseeff, 2003).)

Fig. 12 visualizes the frequency and energy consumption of individ-
ual features in the results, on all datasets and all algorithms, except the
MI based search. JerkMagSq-iqr is the only feature that shows up in five

Fig. 11. Ten most frequently occurring features, plotted per dataset.

11

A. Elsts et al. Journal of Network and Computer Applications 168 (2020) 102770

Fig. 12. The energy consumption and the selection frequency of individual
features. The diameter of the nodes is proportional to their frequencies in the
results. The color of a node corresponds to its individual energy consumption
(darker color – more energy). (For interpretation of the references to color in
this figure legend, the reader is referred to the Web version of this article.)

Table 7
Algorithm runtime performance on the
SPHERE dataset.

Algorithm Runtime, seconds

Mutual Information 4.6s
Greedy search 454.2s
PSO, multi-objective 1924.5s
PSO, single objective 2413.6s

out of the six plots. It is likely that the main reason for that is how
cheap it is to transmit the results of this feature. However, it would be
rather difficult to manually come up with this feature, as it requires two
intermediate transforms of the data (first jerk, then magnitude squared),
succeeded by the calculation of both quartiles. We are not aware of any
existing research that uses this particular feature. This demonstrates

that our generalized approach of combining arbitrary transforms and
calculating all candidate features on the result helps to discover novel,
useful features.

5.7. Algorithm runtime performance

The algorithms are envisioned to run offline, on a powerful com-
puter. In Table 7 we provide results on an Lenovo Thinkpad X1 lap-
top with Intel Core i7-10710U CPU and 16 GB RAM. It can be seen
the mutual information based method is by far the fastest one, while
the wrapper search methods incur a significant runtime as they have
to train and evaluate RF classifiers on the dataset many times over.
The application only uses a single core of the CPU; there is a potential
for several-fold improvement if multithreading or GPU were used. The
exact performance depends both on the dataset size and the classifier
parameters, such as the number of trees in the RF classifier (see Section
4.3).

6. Discussion

6.1. Energy saved by using the feature extraction

Wearable applications frequently collect the full acceleration data
(Elsts et al., 2018b). Such an approach provides flexibility later on and
is especially important if the initial hypothesis is not clear. However,
simply adding more features may not improve the accuracy of the pre-
diction (Table 8). When all features are used inputs to the RF classifier,
the performance is worse in 5 cases out of 6 compared with selecting
and sending over a group of features (see Table 9).

Moreover, the raw data transmission has much higher cost com-
pared to extracting and transmitting features. On the target platform,
collection raw data for a single window requires 31.46 × 3 = 94.38 μC
(Table 4). At 10% of that cost (i.e., at ≤ 9.4 μC) the accuracy is simi-
lar to that obtained from using all features (Table 8). Hence, using the
on-board feature extraction reduces the cost tenfold with only a small
decrease in accuracy.

6.2. Application examples

Fig. 13 shows the intended application of this work.
The inputs of the proposed system are: labeled training data from

a short-term pilot experiment, list of features, and the platform model.
The amount of the training data required is not large: in our evaluation
it ranges from 2.1 h for SPHERE to > 7 h for HAR (Table 6), although
a more detailed activity profile may require more data. The amount of

Table 8
F1 score comparison with and without feature selection.

PAMAP2 HAR SPHERE
Dataset Dataset Challenge Dataset

F1 score, best feature group 0.855 0.895 0.859
F1 score, all features 0.854 0.833 0.820
Best F1 score at ≤ 9.4 μC 0.833 0.875 0.855

Table 9
Charge consumption comparison with and without feature selection.

PAMAP2 HAR SPHERE
Dataset Dataset Challenge Dataset

Raw data 94.38 μC 94.38 μC 94.38 μC
At 99% of max F1 score 20.02 μC 36.04 μC 36.24 μC
At 95% of max F1 score 8.39 μC 25.49 μC 36.08 μC
At 90% of max F1 score 6.55 μC 6.18 μC 7.128 μC

12

A. Elsts et al. Journal of Network and Computer Applications 168 (2020) 102770

Fig. 13. The envisioned application of the proposed system.

the data has an impact on the result quality (Figs. 6–8), but even for
SPHERE it is acceptable.

The output is the approximate Pareto front of feature groups; it
should be used together with a battery model that captures the dis-
charge patterns of the hardware platform’s power source (its voltage
and capacity dynamics under load). Given both, it is possible to answer
questions about the accuracy and longevity of the deployments before
actually carrying them out, thus saving time and effort.

Example application 1. In a smart home project, wearable devices are
to be deployed to participants together with recharging instructions. What
is the minimum required recharge frequency, given that the system should
achieve F1 score ≥ 0.9 ? Here, the question can be answered by collect-
ing training data, running the feature group selection, and removing
the results with F1 < 0.9. The most efficient remaining feature set
can be used, and the charge consumption can be translated to required
recharge frequency using a battery model.

Example application 2. A clinical researcher plans to carry out a 2-
week trial with ill elderly people as the wearable users. What is the maxi-
mum achievable F1 score, given that the participants should not be required
to recharge the devices? Here, the charge consumption first must be trans-
lated to battery life, and applied as a filter to the results; after that, the
highest-scoring feature set provides the answer.

7. Conclusions

This paper proposes a framework for finding groups of features
that have approximately optimal energy-accuracy trade-offs for activ-
ity recognition from acceleration data. The proposed system helps to
answer questions about the expected battery lifetime and recognition
accuracy of an activity recognition application without carrying a full-
scale labor-intensive deployment. We describe a detailed energy con-
sumption model that takes into account feature inter-dependencies and
instantiate this model for an ARM Cortex-M3 based wearable platform.
Subsequently, we describe and evaluate a number of feature selec-
tion algorithms. Their evaluation using three datasets shows that the
multi-objective Particle Swarm Optimization algorithm achieves the
best results in terms of the accuracy-energy tradeoff. Extracting and
sending the features requires an order of magnitude less energy com-
pared with sending the raw data, while having minimal impact on the
F1 score.

Author contributions

Atis Elsts: design of experiments, experimentation, drafting and
revising of the manuscript. Niall Twomey: design of experiments,
experimentation, drafting and revising of the manuscript. Ryan
McConville: design of experiments, experimentation, drafting and
revising of the manuscript. Ian Craddock: original idea, supervision
of the work.

Declaration of competing interest

The authors declare no conflict of interest.

Acknowledgments

This work was supported by the ERDF Activity 1.1.1.2 “Post-
doctoral Research Aid” (No. 1.1.1.2/VIAA/2/18/282).

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://
doi.org/10.1016/j.jnca.2020.102770.

References

Anguita, D., et al., 2013. A public domain dataset for human activity recognition using
smartphones. In: European Symp. on Artificial Neural Networks, Computational
Intell. and Mach. Learning (ESANN).

Bajpai, A., Jilla, V., Tiwari, V.N., Venkatesan, S.M., Narayanan, R., 2015. Quantifiable
fitness tracking using wearable devices. In: Engineering in Medicine and Biology
Society (EMBC), 2015 37th Annual International Conference of the IEEE. IEEE, pp.
1633–1637.

Bormann, C., Hoffman, P., 2013. Concise Binary Object Representation (CBOR), RFC
7049. IETF.

Bormann, C., Ersue, M., Keranen, A., 2014. Terminology for Constrained-Node
Networks. RFC 7228, IETF. .

Chu, D., Lane, N.D., Lai, T.T.-T., Pang, C., Meng, X., Guo, Q., Li, F., Zhao, F., 2011.
Balancing energy, latency and accuracy for mobile sensor data classification. In:
Proceedings of the 9th ACM Conference on Embedded Networked Sensor Systems.
ACM, pp. 54–67.

Cilla, R., Patricio, M.A., Berlanga, A., Molina, J.M., 2009. Creating human activity
recognition systems using pareto-based multiobjective optimization. In: 2009 Sixth
IEEE International Conference on Advanced Video and Signal Based Surveillance.
IEEE, pp. 37–42.

Elsts, A., 2016. Source node selection to increase the reliability of sensor networks for
building automation. In: EWSN, pp. 125–136.

Elsts, A., McConville, R., Fafoutis, X., Twomey, N., Piechocki, R., Santos-Rodriguez, R.,
Craddock, I., 2018a. On-board feature extraction from acceleration data for activity
recognition. In: Proceedings of the International Conference on Embedded Wireless
Systems and Networks (EWSN).

Elsts, A., Fafoutis, X., Woznowski, P., Tonkin, E., Oikonomou, G., Piechocki, R.,
Craddock, I., 2018b. Enabling healthcare in smart homes: the sphere iot network
infrastructure. IEEE Commun. Mag. 56, 164–170.

Emmanouilidis, C., Hunter, A., MacIntyre, J., 2000. A multiobjective evolutionary
setting for feature selection and a commonality-based crossover operator. In:
Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.
00TH8512), vol. 1. IEEE, pp. 309–316.

Fafoutis, X., Vafeas, A., Janko, B., Sherratt, R.S., Pope, J., Elsts, A., Mellios, E., Hilton,
G., Oikonomou, G., Piechocki, R., Craddock, I., 2017. Designing wearable sensing
platforms for healthcare in a residential environment. EAI Endorsed Trans.
Pervasive Health Technol. 17.

Gordon, D., Czerny, J., Miyaki, T., Beigl, M., 2012. Energy-efficient activity recognition
using prediction. In: 2012 16th International Symposium on Wearable Computers.
IEEE, pp. 29–36.

Guyon, I., Elisseeff, A., 2003. An introduction to variable and feature selection. J. Mach.
Learn. Res. 3, 1157–1182.

Hadjidj, A., Souil, M., Bouabdallah, A., Challal, Y., Owen, H., 2013. Wireless sensor
networks for rehabilitation applications: challenges and opportunities. J. Netw.
Comput. Appl. 36, 1–15.

13

https://doi.org/10.1016/j.jnca.2020.102770
https://doi.org/10.1016/j.jnca.2020.102770
http://refhub.elsevier.com/S1084-8045(20)30244-7/sref1
http://refhub.elsevier.com/S1084-8045(20)30244-7/sref2
http://refhub.elsevier.com/S1084-8045(20)30244-7/sref3
http://refhub.elsevier.com/S1084-8045(20)30244-7/sref4
http://refhub.elsevier.com/S1084-8045(20)30244-7/sref5
http://refhub.elsevier.com/S1084-8045(20)30244-7/sref6
http://refhub.elsevier.com/S1084-8045(20)30244-7/sref7
http://refhub.elsevier.com/S1084-8045(20)30244-7/sref8
http://refhub.elsevier.com/S1084-8045(20)30244-7/sref9
http://refhub.elsevier.com/S1084-8045(20)30244-7/sref10
http://refhub.elsevier.com/S1084-8045(20)30244-7/sref11
http://refhub.elsevier.com/S1084-8045(20)30244-7/sref12
http://refhub.elsevier.com/S1084-8045(20)30244-7/sref13
http://refhub.elsevier.com/S1084-8045(20)30244-7/sref14

A. Elsts et al. Journal of Network and Computer Applications 168 (2020) 102770

Janidarmian, M., Roshan Fekr, A., Radecka, K., Zilic, Z., 2017. A comprehensive analysis
on wearable acceleration sensors in human activity recognition. Sensors 17, 529.

Jensen, U., Kugler, P., Ring, M., Eskofier, B.M., 2016. Approaching the accuracycost
conflict in embedded classification system design. Pattern Anal. Appl. 19, 839–855.

Kassab, W., Darabkh, K.A., 2020. Az survey of internet of things: architectures,
protocols, applications, recent advances, future directions and recommendations. J.
Netw. Comput. Appl. 102663.

Kennedy, J., 2011a. Particle swarm optimization. In: Encyclopedia of Machine Learning.
Springer, pp. 760–766.

Kennedy, J., 2011b. Particle swarm optimization. In: Encyclopedia of Machine Learning.
Springer, pp. 760–766.

Lane, N.D., Bhattacharya, S., Mathur, A., Georgiev, P., Forlivesi, C., Kawsar, F., 2017.
Squeezing deep learning into mobile and embedded devices. IEEE Pervasive
Comput. 16, 82–88.

Liang, Y., Zhou, X., Yu, Z., Guo, B., 2014. Energy-efficient motion related activity
recognition on mobile devices for pervasive healthcare. Mobile Network. Appl. 19,
303–317.

Maurer, U., Smailagic, A., Siewiorek, D.P., Deisher, M., 2006. Activity recognition and
monitoring using multiple sensors on different body positions. In: International
Workshop on Wearable and Implantable Body Sensor Networks (BSN). IEEE.

McGhin, T., Choo, K.-K.R., Liu, C.Z., He, D., 2019. Blockchain in healthcare applications:
research challenges and opportunities. J. Netw. Comput. Appl. 135 (2019), 62–75.

Miao, J., Niu, L., 2016. A survey on feature selection. Procedia Comput. Sci. 91,
919–926.

Possas, R., Pinto Caceres, S., Ramos, F., 2018. Egocentric activity recognition on a
budget. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 5967–5976.

Qi, J., Yang, P., Min, G., Amft, O., Dong, F., Xu, L., 2017. Advanced Internet of Things
for personalised healthcare systems: a survey. Pervasive Mob. Comput. 41, 132–149.

Reiss, A., Stricker, D., 2012. Creating and benchmarking a new dataset for physical
activity monitoring. In: Proc. of the 5th Int. Conf. on PErvasive Technologies
Related to Assistive Environments. ACM, pp. 40:1–40:8.

Satyanarayanan, M., 2017. The emergence of edge computing. Computer 50, 30–39.
Sengupta, J., Ruj, S., Bit, S.D., 2020. A Comprehensive survey on attacks, security issues

and blockchain solutions for IoT and IIoT. J. Netw. Comput. Appl. 149 102481.
Srinivas, N., Deb, K., 1994. Multiobjective optimization using nondominated sorting in

genetic algorithms. Evol. Comput. 2, 221–248.
Twomey, N., Diethe, T., Kull, M., Song, H., Camplani, M., Hannuna, S., Fafoutis, X.,

et al., 2016. The SPHERE Challenge: Activity Recognition with Multimodal Sensor
Data. arXiv:1603.00797.

Twomey, N., Diethe, T., Fafoutis, X., Elsts, A., McConville, R., Flach, P., Craddock, I.,
2018. A comprehensive study of activity recognition using accelerometers.
Informatics 5.

Wang, N., Merrett, G.V., Maunder, R.G., Rogers, A., 2013. Energy and accuracy
trade-offs in accelerometry-based activity recognition. In: Computer
Communications and Networks (ICCCN), 2013 22nd International Conference on.
IEEE, pp. 1–6.

Wang, J., Chen, Y., Hao, S., Peng, X., Hu, L., 2018. Deep Learning for Sensor-Based
Activity Recognition: A Survey, Pattern Recognition Letters.

Woznowski, P., Burrows, A., Diethe, T., et al., 2017. SPHERE: a sensor platform for
healthcare in a residential environment. In: Designing, Developing, and Facilitating
Smart Cities: Urban Design to IoT Solutions. Springer International Publishing, pp.
315–333.

Xue, B., Zhang, M., Browne, W.N., 2013. Particle swarm optimization for feature
selection in classification: a multi-objective approach. IEEE Trans. Cybern. 43,
1656–1671.

Yan, Z., Subbaraju, V., Chakraborty, D., Misra, A., Aberer, K., 2012. Energy-efficient
continuous activity recognition on mobile phones: an activity-adaptive approach. In:
2012 16th International Symposium on Wearable Computers. Ieee, pp. 17–24.

Zheng, L., Wu, D., Ruan, X., Weng, S., Peng, A., Tang, B., Lu, H., Shi, H., Zheng, H.,
2017. A novel energy-efficient approach for human activity recognition. Sensors 17,
2064.

Zhu, N., Diethe, T., Camplani, M., Tao, L., Burrows, A., Twomey, N., Kaleshi, D.,
Mirmehdi, M., Flach, P., Craddock, I., 2015. Bridging e-health and the internet of
things: the SPHERE project. IEEE Intell. Syst. 30, 39–46.

Atis Elsts received the Ph.D. degree in computer science from the University of Latvia,
in 2014. He was with the Digital Health Engineering Group, University of Bristol, from
2016 to 2018, with the Swedish Institute of Computer Science (SICS), in 2015, and a
Researcher with Uppsala University, from 2014 to 2015. Since December 2018, he has
been a Researcher with the Institute of Electronics and Computer Science (EDI), Riga,
Latvia. He is a maintainer of the Contiki-NG operating system for the Internet of Things
(IoT). His scientific interests focus on experimental research in networked embedded Sys-
tems, including network protocols, wearable devices, and embedded machine learning.

Niall Twomey is a postdoctoral researcher on the Digital Health Engineering group at
the University of Bristol. His research interests include data mining, fusion of environ-
mental sensors in smart home environments, and the use of digital signal processing,
machine learning, and application-centric decision making for objective health and well-
ness assessments. Twomey has a PhD in machine learning applied to signal processing
from University College Cork, Ireland.

Ryan McConville is a Lecturer in Data Science, Machine Learning and AI within the
Intelligent Systems Laboratory and Department of Engineering Mathematics at the Uni-
versity of Bristol. He gained his PhD working with the Centre for Secure Information
Technologies (CSIT) at Queen’s University Belfast in 2017 where he researched large scale
unsupervised machine learning. His research interests lie around unsupervised machine
learning with complex data.

Ian Craddock is currently a full professor with the University of Bristol, UK, and Direc-
tor of the flagship “SPHERE” centre (www.irc-sphere.ac.uk) comprising approximately
100 researchers and clinicians working on IoT technology for health. He serves on the
healthcare strategy board for the UK’s largest engineering funder. He is also separately
employed by Toshiba as Managing Director of their Telecommunications Research Lab in
Bristol.

14

http://refhub.elsevier.com/S1084-8045(20)30244-7/sref15
http://refhub.elsevier.com/S1084-8045(20)30244-7/sref16
http://refhub.elsevier.com/S1084-8045(20)30244-7/sref17
http://refhub.elsevier.com/S1084-8045(20)30244-7/sref18
http://refhub.elsevier.com/S1084-8045(20)30244-7/sref19
http://refhub.elsevier.com/S1084-8045(20)30244-7/sref20
http://refhub.elsevier.com/S1084-8045(20)30244-7/sref21
http://refhub.elsevier.com/S1084-8045(20)30244-7/sref22
http://refhub.elsevier.com/S1084-8045(20)30244-7/sref23
http://refhub.elsevier.com/S1084-8045(20)30244-7/sref24
http://refhub.elsevier.com/S1084-8045(20)30244-7/sref25
http://refhub.elsevier.com/S1084-8045(20)30244-7/sref26
http://refhub.elsevier.com/S1084-8045(20)30244-7/sref27
http://refhub.elsevier.com/S1084-8045(20)30244-7/sref28
http://refhub.elsevier.com/S1084-8045(20)30244-7/sref29
http://refhub.elsevier.com/S1084-8045(20)30244-7/sref30
arXiv:1603.00797
http://refhub.elsevier.com/S1084-8045(20)30244-7/sref32
http://refhub.elsevier.com/S1084-8045(20)30244-7/sref33
http://refhub.elsevier.com/S1084-8045(20)30244-7/sref34
http://refhub.elsevier.com/S1084-8045(20)30244-7/sref35
http://refhub.elsevier.com/S1084-8045(20)30244-7/sref36
http://refhub.elsevier.com/S1084-8045(20)30244-7/sref37
http://refhub.elsevier.com/S1084-8045(20)30244-7/sref38
http://refhub.elsevier.com/S1084-8045(20)30244-7/sref39
www.irc-sphere.ac.uk

	Energy-efficient activity recognition framework using wearable accelerometers
	1. Introduction
	2. Related work
	3. Energy model
	3.1. Features, transforms, and filters
	3.2. Feature preselection
	3.3. Energy costs
	3.4. Example hardware platform
	3.4.1. Platform description
	3.4.2. Computation
	3.4.3. Data transmission

	3.5. Model instantiation for the example hardware platform

	4. Feature group selection methodology
	4.1. Preliminaries
	4.2. The multi-objective optimization problem
	4.3. Activity recognition classifier
	4.4. Selection algorithms
	4.4.1. Greedy search
	4.4.2. Mutual information based selection
	4.4.3. Particle swarm optimization based search

	4.5. Datasets
	4.6. Feature group selection algorithm

	5. Results
	5.1. PSO based search
	5.2. Greedy search
	5.3. MI based selection
	5.4. Dataset specifics
	5.5. Repeatability
	5.6. The performance of individual features
	5.7. Algorithm runtime performance

	6. Discussion
	6.1. Energy saved by using the feature extraction
	6.2. Application examples

	7. Conclusions
	Author contributions
	Declaration of competing interest
	Acknowledgments
	Appendix A. Supplementary data
	References

