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Introduction: DNN for Biomedical Image Analysis

• AI is increasingly used in biomedical research
• State-of-the-art AI methods for image analysis: DNNs
• Sample applications:

• segmentation of endoscopy images
• segmentation of nuclei microscopy images
• classification of X-ray images

• Advantages of DNN:
• high accuracy
• learn from the data -> no need for feature engineering

• Disadvantages of DNN:
• require a lot of computing power
• ‘black boxes’
• need a lot of data for training
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Introduction: DNN for Biomedical Image Analysis

• AI is increasingly used in biomedical research
• State-of-the-art AI methods for image analysis: DNNs
• Sample applications:

• segmentation of endoscopy images
• segmentation of nuclei microscopy images
• classification of X-ray images

• Advantages of DNN:
• high accuracy
• learn from the data -> no need for feature engineering

• Disadvantages of DNN:
• require a lot of computing power
• ‘black boxes’
• need a lot of data for training

NB! biomedical datasets tend to be small
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Data (un)availability problem: possible solutions

• How to deal with the lack of available data for training DNN models?

Solution #1: data augmentation
figure: Dufumier et al, 2021

Solution #2: transfer learning
figure: Mukhlif et al, 2023 

Solution #3: 
synthetic data

figure: Chen et al, 2021
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Synthetic data for training DNN

• Widely used approach in different domains:
• easy to modify output
• as soon as generative pipeline is created, it’s easy 

to generate a lot of data
• Main challenges: 

• creating the generative pipeline
• synthetic ↔real gap

• State-of-the-art large generative models:
• Midjourney
• DALL-E
• Stable Diffusion

• Can we use such models for generating biomedical 
images?

• Biomedical data are too specific for general-purpose 
models

• Retraining from ground up is costly and 
time-consuming

• Possible solution: fine-tuning

Ivanovs et al, 2022

Duplevska et al, 2022

Adams et al, 2023
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Goals and hypotheses

• Goal: to design a classifier for Organ on Chip (OOC) 
microscopy images

• Hypotheses:
• H1: by by using DNN, better-than-naive accuracy can be achieved 
• H2: augmenting dataset with synthetic data will result in improved 

accuracy

good 
acceptable 
bad
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Methodology: dataset of microscopy images

• 822 JPG images:
• color:

• 32 RGB
• 790 grayscale

• resolution:
• 810 images: 2048x1536 pixels
• 12 images: 640x480 pixels

• 5 cell lines: HUVEC, HSAEC, A549,
CACO, HPMEC

• classes:
• ‘good’: 500 images
• ‘acceptable’: 212 images
• ‘bad’: 110 images

‘good’ 

‘acceptable’ 

‘bad’ 
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Methodology: synthetic data generation

• Pipeline: Stable Diffusion (Rombach et al, 2022) fine-tuned with LoRA (Hu et al, 2021)
• LoRA parameters:

• 2 repeats per image
• 10 epochs
• batch size = 2
• U-Net learning rate = 5E-4
• text encoder learning rate = 1E-4

• Stable Diffusion parameters:
• Euler A sampler
• 20 sampling steps
• CGF score = 7
• random seed

• Generated 2 datasets:
• with LoRA weight = 1.0
• with LoRA weight = 0.8

Higher weight -> higher similarity to original images

Fine-tuning pretrained model with LoRA
figure: Hu et al, 2021
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Methodology: training and validating DNN

• DNN model: 
• EfficientNet B7 pretrained on imagenet
• Architecture: 

• input layer: 600x600 pixels
• data augmentation layers
• basic EfficientNet B7 with frozen weights
• GlobalAvgPooling2D layer
• BatchNormalization layer (dropout=0.2)
• Dense layer (3 neurons, softmax)

• Training: 
• 30 epochs
• Adam optimizer (lr=0.001)
• categorical crossentropy loss

• Dataset split: 5 folds with 1 different fold being a holdout fold for 
cross-validation each time
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Results: synthetic images of the cells

original

synthetic
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Results: performance of DNN classifier
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Summary, conclusions and future work

• Main findings:
• H1 was confirmed: best accuracy = 72.9% (naive classifier acc. = 60.8%)
• Synthetic images look somewhat similar to the authentic ones
• Yet H2 was not confirmed: augmentation with synthetic data resulted in 

worse accuracy
• Further improvements of synthetic data generation methods are 

needed, e.g.:
• search for optimal parameters for LoRA
• generation of synthetic images corresponding to specific cell lines rather 

than generic images
• img2img translation with Stable Diffusion
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Thank you for your attention! 

This work was supported by the project ’AI-improved organ on chip cultivation for personalised 
medicine (AimOOC)’ (contract with Central Finance and Contracting Agency of Republic of Latvia 
no. 1.1.1.1/21/A/079; the project is cofinanced by REACT-EU funding for mitigating the 
consequences of the pandemic crisis).


