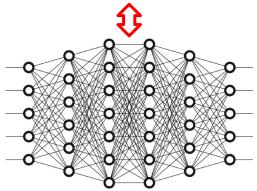
Synthetic Image Generation With a Fine-Tuned Latent Diffusion Model For Organ on Chip Cell Image Classification

Maksims Ivanovs¹, Laura Leja¹, Kārlis Zviedris¹, Roberts Rimsa², Karina Narbute³, Valerija Movcana³, Felikss Rumnieks³, Arnis Strods³, Kevin Gillois³, Gatis Mozolevskis², Arturs Abols^{2,3}, Roberts Kadiķis¹

¹ Institute of Electronics and Computer Science (EDI), Riga, Latvia
² Cellbox Labs, Riga, Latvia
³ Latvian Biomedical Research and Study Centre, Riga, Latvia

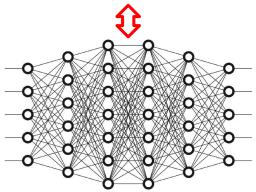
Introduction: DNN for Biomedical Image Analysis

- · Al is increasingly used in biomedical research
- State-of-the-art AI methods for image analysis: DNNs
- Sample applications:
 - segmentation of endoscopy images
 - segmentation of nuclei microscopy images
 - classification of X-ray images
- Advantages of DNN:
 - high accuracy
 - learn from the data -> no need for feature engineering
- Disadvantages of DNN:
 - require a lot of computing power
 - 'black boxes'
 - need a lot of data for training



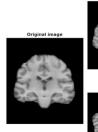
Introduction: DNN for Biomedical Image Analysis

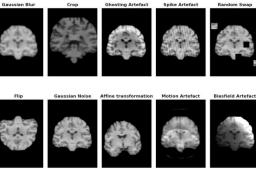
- · Al is increasingly used in biomedical research
- State-of-the-art AI methods for image analysis: DNNs
- Sample applications:
 - segmentation of endoscopy images
 - segmentation of nuclei microscopy images
 - classification of X-ray images
- Advantages of DNN:
 - high accuracy
 - learn from the data -> no need for feature engineering
- Disadvantages of DNN:
 - require a lot of computing power
 - 'black boxes'
 - need a lot of data for training NB! biomedical datasets tend to be small



Data (un)availability problem: possible solutions

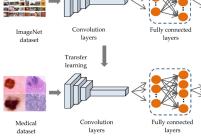
• How to deal with the lack of available data for training DNN models?

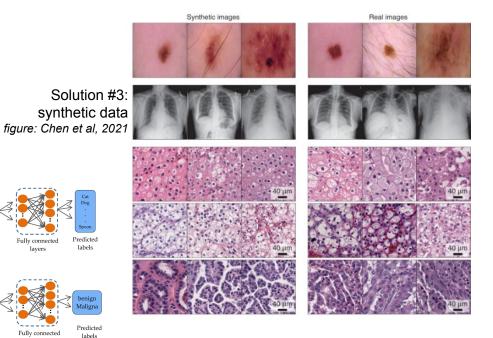




Solution #1: data augmentation *figure: Dufumier et al, 2021*

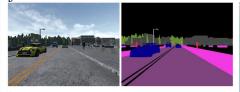
Solution #2: transfer learning figure: Mukhlif et al, 2023





Synthetic data for training DNN

- Widely used approach in different domains:
 - easy to modify output
 - as soon as génerative pipeline is created, it's easy to generate a lot of data
- Main challenges:
 - creating the generative pipeline
 - synthetic ↔real gap
- State-of-the-art large generative models:
 - Midjourney
 - DALL-E
 - Stable Diffusion
- Can we use such models for generating <u>biomedical</u> images?
 - Biomedical data are too specific for general-purpose models
 - Retraining from ground up is costly and time-consuming
 - Possible solution: fine-tuning

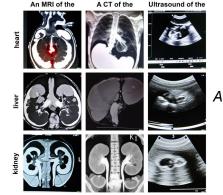


Duplevska et al. 2022

(b) Synthetic image

(a) Real image

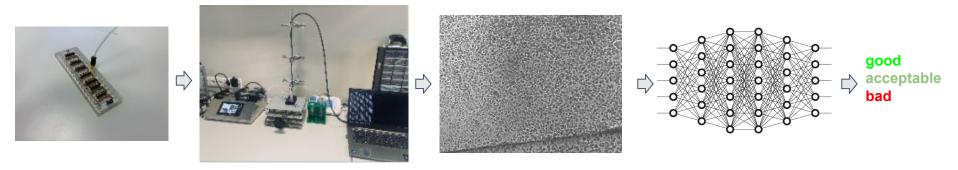
Ivanovs et al, 2022



Adams et al. 2023

Goals and hypotheses

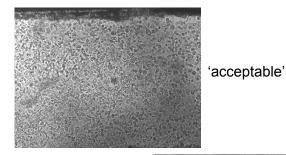
 Goal: to design a classifier for Organ on Chip (OOC) microscopy images



- Hypotheses:
 - H1: by by using DNN, better-than-naive accuracy can be achieved
 - H2: augmenting dataset with synthetic data will result in improved accuracy

Methodology: dataset of microscopy images

- 822 JPG images:
 - color:
 - 32 RGB
 - 790 grayscale
 - resolution:
 - 810 images: 2048x1536 pixels
 - 12 images: 640x480 pixels
 - 5 cell lines: HUVEC, HSAEC, A549, CACO, HPMEC
 - classes:
 - 'good': 500 images
 - 'acceptable': 212 images
 - 'bad': 110 images ٠

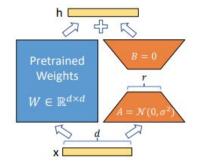


'bad'

Methodology: synthetic data generation

- Pipeline: Stable Diffusion (Rombach et al, 2022) fine-tuned with LoRA (Hu et al, 2021)
- LoRA parameters:
 - · 2 repeats per image
 - 10 epochs
 - batch size = 2
 - U-Net learning rate = 5E-4
 - text encoder learning rate = 1E-4
- Stable Diffusion parameters:
 - Euler A sampler
 - 20 sampling steps
 - CGF score = 7
 - random seed
- Generated 2 datasets:
 - with LoRA weight = 1.0
 - with LoRA weight = 0.8

Higher weight -> higher similarity to original images



Fine-tuning pretrained model with LoRA figure: Hu et al, 2021

Methodology: training and validating DNN

- DNN model:
 - EfficientNet B7 pretrained on imagenet
 - Architecture:
 - input layer: 600x600 pixels
 - data augmentation layers
 - basic EfficientNet B7 with frozen weights
 - GlobalAvgPooling2D layer
 - BatchNormalization layer (dropout=0.2)
 - Dense layer (3 neurons, softmax)
- Training:
 - 30 epochs
 - Adam optimizer (Ir=0.001)
 - categorical crossentropy loss
- Dataset split: 5 folds with 1 different fold being a holdout fold for cross-validation each time

Results: synthetic images of the cells

original (a) good (b) acceptable (c) bad synthetic

(d) good

(e) acceptable

(f) bad

Results: performance of DNN classifier

TABLE I: Classification Results on Synthetic Data with LoRA weight=1.0. The best result for each metric is in bold.

Dataset	Accuracy	Precision	Recall
Baseline: Real-world	0.729	0.731	0.715
Real-world & 10% synthetic	0.721	0.729	0.701
Real-world & 25% synthetic	0.707	0.719	0.699
Real-world & 50% synthetic	0.710	0.720	0.697
Real-world & 75% synthetic	0.696	0.702	0.680
Real-world & 100% synthetic	0.699	0.707	0.687
Synthetic only (100%)	0.614	0.617	0.608

TABLE II: Classification Results on Synthetic Data with LoRA weight=0.8. The best result for each metric is in bold.

Dataset	Accuracy	Precision	Recall
Baseline: Real-world	0.729	0.731	0.715
Real-world & 10% synthetic	0.718	0.729	0.702
Real-world & 25% synthetic	0.704	0.709	0.69
Real-world & 50% synthetic	0.693	0.698	0.679
Real-world & 75% synthetic	0.707	0.718	0.696
Real-world & 100% synthetic	0.701	0.709	0.685
Synthetic only (100%)	0.621	0.63	0.595

Summary, conclusions and future work

- Main findings:
 - *H1* was confirmed: best accuracy = 72.9% (naive classifier acc. = 60.8%)
 - · Synthetic images look somewhat similar to the authentic ones
 - Yet H2 was not confirmed: augmentation with synthetic data resulted in worse accuracy
- Further improvements of synthetic data generation methods are needed, e.g.:
 - search for optimal parameters for LoRA
 - generation of synthetic images corresponding to specific cell lines rather than generic images
 - img2img translation with Stable Diffusion

Thank you for your attention!

This work was supported by the project 'Al-improved organ on chip cultivation for personalised medicine (AimOOC)' (contract with Central Finance and Contracting Agency of Republic of Latvia no. 1.1.1.1/21/A/079; the project is cofinanced by REACT-EU funding for mitigating the consequences of the pandemic crisis).

NATIONAL DEVELOPMENT PLAN 2020

EUROPEAN UNION European Regional Development Fund

Maksims Ivanovs