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Abstract—In the paper, the performance of different Artificial
neural network (ANN) architectures - CNN, RNN, Transformers,
CNN/LSTM, ResNet, and MLP is discussed in UWB impulse radio
radar signal classification. The signals are obtained by reflecting
and passing UWB pulses through different material objects that
give different information for the classification purpose. The
ANN architectures are compared on their classification precision,
training time, and memory requirements. The training data
consists of 144 objects including regular and crashed PET bottles,
glass bottles, and metal cans. The results show the accuracy’s of
classification if mono-static (reflected signals are analyzed), bi-
static (propagated trough signals), and multi-static setups of UWB
radar are used. For single-channel cases GRU (99.65%), Resnet
(99.69%), Transformer (99.66%) architectures are preferable,
while the highest multi-static evaluation accuracy reaches 99.90%
for the Transformer. As expected the more dense ANN networks
perform better classification.

I. INTRODUCTION

A newer technology, ultra wide-band impulse radio (UWB-
IR) radar, is being used for indoor location, medical appli-
cations, security [1-4], and non-contact, non-destructive eval-
uations of material’s visible and non-visible properties [4-6].
Different antenna arrangements, including bi-static, mono-static
(more in the text, single-static), and multi-static, can be used
to generate UWB-IR radar signals. In a mono-static radar
configuration, there is still just one receiving antenna, but it
is placed in a different location from the transmitting antenna,
such as directly behind the target object. As a result, a signal
that has passed through the target is collected and processed.
Because there are multiple receiving antennas dispersed across
numerous locations in addition to one emitting antenna in
this arrangement, a multi-static system is more challenging.
The multi-static arrangement enables simultaneous recording
of signals that are propagated through and reflected in various
combinations. In [6,7], where the classification approach is
based on a hybrid neural network that includes Convolution
layers for feature recognition, the benefits of a multi-static
UWB-IR radar configuration are covered.

Different Artificial neural network (ANN) architectures have
different advantages. For example, Convolutional neural net-
works (CNNs) achieved enormous success in computer vision,

while recurrent neural networks (RNNs) gained popularity in
speech recognition. Regarding the processing of UWB-IR radar
signals, it is not known which type of ANN architecture is
appropriate for certain applications. The impact of different
architectures for UWB-IR radar performance to classify objects
from different materials has not been analyzed so far. Therefore,
this paper aims to investigate, evaluate (accuracy and training
time) and compare the use of different neural networks in
the feature recognition layer for both single-static and multi-
static setups of UWB-IR radar. With a further possibility to
understand how significantly each of the antennas contributes
to the overall accuracy of the classification of objects from
different materials. The ANN architectures used in the research
in this article are: a multi-layer perceptron, CNN, a long-short
time memory, a CNN-LSTM, Transformer, GRU, ResNet. The
Artificial neural network methods for classification are used
instead of some more classical classification methods because
of the supremacy when working with big data sets and in-
creased complexity with multiple signals or different materials
in the future. For now this paper only looks at the basic case
of four receiving antennas and three different materials and
two differant shapes, keeping in mind this possible expansions
of measurements to understand which network could be used.
Given the above, the following paper is structured as follows:
The next section provides information on the feasibility study
as well as information about the different ANNs. Chapter 3
describes the experimental UWB-IR radar set up and the signal
processing approach used to evaluate the efficiency of different
ANN architectures. The results are presented in Section IV,
followed by a final section with conclusions and ideas for
further research.

II. PRELIMINARIES

A. Use of multi-static UWB-IR radar

In general, UWB impulse radio radar sends and receives very
brief impulses on the order of sub-nanoseconds. In [8], the
author analyzes how the relative dielectric constant and material
losses affect the peaks in the reflected and transmitted through
UWB pulse signal wave forms. Consequently, classification by



visual means or utilizing only one time-domain method was
not possible. The number of layers or shape abnormalities of
the item increases the complexity of signal processing [9].
However, the signal characteristics stated above often only
differ by a little amount.

On the other hand, when measuring a crushed or ruff surfaced
object, there can be a possibility that a single antenna reflects
from the object at an undesirable angle, thus making the
measurement undetectable [10]. When UWB signals come into
contact with the object under study, occurs not only reflection
but also transition. UWB pulse, which is propagated through
the object, carries a different kind of information about the
object and can be used as an additional component for signal
processing [11]. The analysis of the propagated through signals
at different angles and reflected signal from the object in
combination with an appropriate signal processing can give
more information about the object (e.g. thickness, fill density,
material, and cracks) and gain accuracy [12]. However, the
propagated trough signals not only have different peaks, signal
phases, and shapes but a slight delay in respect to the reflected
signal as well.

The aspects described above about the nature of UWB-
IR signals, especially in the case of multi-static architecture,
illustrate the complexity of the development of appropriate
signal processing algorithms. The use of ANN is one of the
techniques typically used in problem solution in similar cases
[13]. ANN can detect differences between signal profiles that
are too complex for convenient signal processing methods.

B. Architectures of ANN

1) MLP architecture: The multi-layer perceptron (MLP) is
the simplest and most used building block for any time series
categorization application . It is a straightforward fully con-
nected feed-forward network made up of nodes that calculate
the output value from the input layer through a number of
hidden layers. It served as both an output layer from the other
feature recognition layers and a distinct feature recognition
layer in this study [14].

2) CNN architecture: The Convolution Neural Network ar-
chitecture is a widely used layer for image recognition and
other 3D data classification. CNN is typically divided into
two parts: the first is the convolution and pooling of data,
and the second is the MLP layers for classification based on
the extracted features in part 1. The convolutions layer uses
convolution filters to perform convolution operations on the
preceding layer’s time series. The filter parameters are chosen
based on prior domain knowledge or by using hyper-parameter
search. In the classification task, the most common method is
to use the maximum output neuron as the class label of the
input time series [15].

3) LSTM architecture: RNN networks, or more precisely
Long Short-Term Memory (LSTM) networks, are the most pop-
ular sequence classifiers. Their key advantage is their internal
memory, which recalls the past inputs to create accurate output
values. Recurrent networks operate by iteratively processing
each element of a vector, storing the result, and categorizing

the value. Due to their lengthy training periods and heavy com-
putational demands, they are at a disadvantage. The vanishing
gradient problem, which plagues general RNNs, is avoided by
LSTM networks by adding gating functions into their state
dynamics. An LSTM keeps track of a memory vector m and a
hidden vector h that are in charge of managing state changes
and outputs at every time step [16].

4) GRU architecture: Recurrent neural networks use gated
recurrent units (GRUs) as their gating mechanism. The GRU is
similar to an LSTM with a forget gate, but because it lacks
an output gate, it has fewer parameters than an LSTM. It
was discovered that GRU and LSTM performed similarly on
some polyphonic music modeling, speech signal modeling, and
natural language processing tasks. Given that our circumstance
involves a small data set of only 100+ unique items, GRUs
have been demonstrated to perform better on some smaller and
less frequent data sets [17].

5) CNN/LSTM architecture: The CNN/LSTM architecture
combines LSTMs to facilitate sequence prediction with CNN
layers for feature extraction on input data. The advantages
of both network types are used in this style of architecture.
CNN/LSTMs were created for challenges involving the pre-
diction of visual time series and for the purpose of producing
textual descriptions from sequences of images (e.g. videos).
However, this can be modified for vector classification in 1D
and ought to be better than the two different kinds of designs
[18].

6) Transformer architecture: The RNN/LSTM design is
improved via transformer networks. Tokens are processed by
LSTMs. This architecture keeps track of the complete sequence
it has seen in a concealed state that is updated with each
new input token. Transformers, in contrast, preserves direct
connections to all earlier timestamps, enabling information to
spread over a lot longer sequences [19].

7) ResNet architecture: ResNets serve as an example of
a discriminative deep learning method. They discover the
relationship between the raw input and the classes that might
be assigned to those input records in the event of classification.
ResNets are CNN versions that improve model performance
by introducing linear shortcut connections between blocks of
convolutional layers [20].

III. DATA ACQUISITION AND PROCESSING

This section describes the approach for data capturing si-
multaneously by one or more UWB-IR receivers and the
methodology for appropriate signal processing.

Figure 1 shows the block diagram of the signal processing
approach proposed in [7] and is used in described research as
well. This structure consists of four UWB receivers for signal
acquisition each followed by their own ANN feature block,
the feature blocks then are combined into a single output with
a concatenate layer, to then the single output to be classified
using two dense layers. The basic structure of the ANN block
involves an input layer followed by one of the described ANN
architecture [II-B] feature layers, dropout, and max-pooling
layer. Dropout layers, dense layers have been further applied



Fig. 1. Block diagram of the signal processing.

or tweaked to regularize each of the different networks in
their own way avoiding over-fitting. In particular, it is known
that deep ANN architectures can achieve high accuracy in
forecasting but, due to the high number of parameters involved,
there is a high risk of over-fitting, with a consequent decrease of
out-of-sample accuracy. Dropout is a technique that efficiently
solves the above problem.

In general, additional pre-processing blocks can be added
to signal processing before data are passed to the input layer,
which would filter out various artifacts that may occur in the
case of UWB receivers due to nearby working WI-FI or cellular
network devices.

The proposed solution is designed in a way that the input
channel count can be easily increased or decreased, and the
results from different antennas or its combination can be
compared. If an antenna input channel data is zero, that channel
is ignored and calculates the output from the available input
channels.

A. Data Acquisition

To compare the applicability of ANNs, which have been de-
scribed within Subsection II-B, for the classification of objects
from different materials, a multi-static experimental UWB-IR
radar setup has been used for data acquisition [7]. The setup is
shown in Figure 2. and it consists of UWB-IR radar [21], RF
antenna switch, a single 2.0GHz Vivaldi transmitting antenna,
and 4 exact receiving antennas. As it can be seen in Figure
2. the reflected antenna (Channel 02) is placed directly next to
the transmitting antenna but the antennas (Channel 00, Channel
01, and Channel 03), for propagated through signals, are placed
directly across from the transmitting antenna. The two side
propagation antennas are placed at a distance of 36 degrees
from the directly propagated trough antenna (Channel 1). This
was done to cover quite a large area of the object while having
no interference between the antennas.

The UWB radar is configured to sample 1023 signal points
with a sampling interval equal to 20 ps. The UWB radar
transmitter and receiver bandwidth rates are 0.1 – 4.5 GHz

Fig. 2. Experimental set-up for the data acquisition.

and the antenna parameters are: Frequency Range = 1.4 - 4.7
GHz and Gain @ 3.30GHz = 6.6 dB. 100 frames are recorded
to ensure the possibility to eliminate background noise by
averaging the data. The recorded data frames (1023 samples)
are processed using the approach which is illustrated in Figure
1. No other signal processing methods for the signals were
used. Parameters of the ANNs training phase are the same as
in [7]. The parameters have been optimized using the Grid
search method [22]. An early stopping function has been used
for maximum accuracy. The total data set used to obtain the
results of the presented research has been recorded from 114
objects, including 27 regular and 43 crashed PET bottles, 20
metal cans, and 24 glass bottles. All of the objects were taken
with similar shape in mind to possibly eliminate that the ANN
classifies the materials by shape and not the material.

B. Data processing

First, the data recorded from all objects were divided into
two groups: 1) data for ANN training; 2) data for evaluation,
which is not used in the training and has never been seen by
any neural network.

Regarding the training, data of each object measurement has
been averaged over 25 frames from the 100 recorded frames.
Thus from the raw data frames, 288 averaged data sequences
have been formed and used in the training process. Each data
sequence remains 1023 data long. The averaging is done to
eliminate artifacts in signals and stop the possibility of over-
fitting. The training data for each channel consists of two parts:

1) 85% of recorded data as training data-set (244 data
sequences);

2) 15% of recorded data as validation data split (44 data
sequences).



The evaluation data is recorded from 16 regular and 26
crushed PET bottles, which were unseen for training. This data
set consists of 100 frames for each object that are not averaged
and forms 4200 data sequences). This allows testing the true
accuracy of the used ANNs with unseen and from artifacts that
influence unimproved data.

IV. RESULTS AND DISCUSSION

The results for the analysis of the applicability of ANNs are
obtained in two sub-cases. Firstly, only one of four channels,
which receives propagated trough (Channel 1) or reflected
(Channel 2) UWB-IR pulses has been used for data acquiring.
Secondly, multi-static case, where all four channels together
have been exploited as data sources.

This was chosen to assess the accuracy improvement of using
multiple channels in multi-static setup of the radar for different
ANN architectures and different types of objects.

It is worth noting that all network models have been op-
timized with a grid search over hyper-parameters, such as
network topology and depth, e.g. number of layers, neurons
and activation functions, learning rate batch size, and epochs.
Hyper-parameters optimization is by far the most demanding
procedure in obtaining the best possible accuracy. An extensive
grid search may take weeks.

Because of the nature of ANN training, the results presented
in the paper are obtained by averaging 20 signal processing
cycles. This is done to avoid the effects of specific training
cases. Each cycle is done using different data for training and
evaluation because in the training process Neural Networks
every new cycle starts with random seeds.

The training and evaluation procedures have been performed
using a PC with an A8-6500 AMD processor and Nvidia
GTX780 graphics card.

1) Reflected and Propagated trough case results: Table 1.
summarizes these classification results for various ANN archi-
tectures for single channel cases. Evaluation accuracy shows
the percentage of correctly classified objects. The median of
the values is used because it represents better the ”typical”
precision than mean value, which is which is significantly
reduced in the event of disturbances and artifacts during the
recording of an certain individual signal, because signals have
not been averaged during evaluation phase. The amount of
trainable parameters shows the number of elements in the
architecture, neurons that are affected by the back propagation.

TABLE I
EVALUATION RESULTS SINGLE CHANNEL

Architecture Propagated
trough
(%)

Reflected
(%)

Parameters

MLP 98.43 97.76 262 020
CNN 99.00 97.98 398 048
LSTM 98.21 98.26 1 571 580
GRU 99.60 99.65 133 524
CNN/LSTM 99.17 98.57 654 724
Transformer 99.64 99.66 10 793
ResNet 99.69 99.67 41 728

TABLE II
WRONGLY CLASSIFIED OBJECTS IN SINGLE CHANNEL CASE

Architecture Glass
bottle
Mistakes

Crushed
PET
Mistakes

total mis-
takes

MLP 65 1 66
CNN 1 41 42
LSTM 53 22 75
GRU 11 9 20
CNN/LSTM 1 34 35
Transformer 6 9 15
ResNet 4 9 13

The results show that the worst ANN architecture was MLP
with Propagated - 98.43% and reflected - 97.76% accuracy, this
was expected as the architecture is the most basic one and does
not extract or remember any features from previous layers.

The best performing ANN architecture is ResNet with chan-
nel 1 - 99.69% and channel 2 - 99.67% accuracy.

Comparing the two channels it can be seen that the networks
with a memory like LSTM, GRU, and Transformer preform
better on the reflected signals. As well as GRU network
preforms much better than LSTM with a smaller data amount.
Comparing the parameter count the better performing networks
have a lower amount of parameters, for example, ResNet has
only 41 728 but the second-worst network LSTM has 1 571
580 parameters.

To investigate the exact accuracy of the different ANN
architectures confusion matrices are used. In Table 2 is shown
how many times a regular PET bottle was mistaken with a glass
bottle, with a crushed PET bottle and total mistakes made. No
other classification errors were done by the architectures, the
networks never classified one of the PET bottles as a metal
can or crushed PET as a regular PET bottle. For this only
Propagated trough data was looked at as it was an overall better-
performing model.

It is observable that architectures with memory made more
mistakes with crushed PET bottles than glass bottles. But for
more traditional networks the glass bottle mistakes were higher.
By changing the architectures we can see that the improvement
from simple architecture like MLP (66 mistakes) to more
dense networks like Transformer (15 mistakes) and ResNet (13
mistakes) decrease the total mistake count around 4.7 times.
The mistakes in evaluation data could be explained by the less
dense networks or networks without memory networks, did
not have enough information or features to extract to correctly
classify different object materials.

2) Multi-static case results: The multi-static case has been
investigated a little bit deeper because of the better perfor-
mance, by looking additionally at the mean and standard
deviation of the results in addition to the ones done for single-
static cases. Table 3. summarizes these classification results for
various ANN architecture cases for UWB multi-static radar.

These results show that differently as in the single channel
cases the highest median evaluation is 99.90%, for the Trans-
former network but the lowest accuracy is achieved by MLP
with 99.57% accuracy. The Transformer network is the slowest



TABLE III
EVALUATION RESULTS - MULTI-STATIC CASE

Architecture Evaluation
accuracy
Me-
dian(%)

Evaluation
accuracy
Mean(%)

Standard
deviation
(%)

Training
time (s)

Parameters

MLP 99.57 94.39 4.96 60 3014282
CNN 99.62 99.5 1.27 70 657020
LSTM 99.79 93.63 5.99 1500 2090986
GRU 99.71 96.20 4.25 1200 1182348
CNN/LSTM 99.74 96.60 3.57 2000 654724
Transformer 99.90 98.45 1.02 21056 10793
ResNet 99.83 97.8 1.7 75 44886

TABLE IV
WRONGLY CLASSIFIED MATERIAL OBJECT TABLE FOR MULTI-STATIC CASE

Architecture Glass
bottle
Mistakes

Crushed
PET
Mistakes

Total mis-
takes

MLP 10 8 18
CNN 9 7 16
LSTM 6 3 9
GRU 2 10 12
CNN/LSTM 3 8 11
Transformer 1 3 4
ResNet 3 4 7

network to train with an average of 21056 seconds but the MLP
network was the fastest to train with 60 seconds per cycle. The
high accuracy of the transformer network could be identified
that the Attention mechanism inside the transformer enables
the transformers to have extremely long-term memory. A trans-
former model can “attend” or “focus” on all previous tokens
that have been generated and thus work better with the more
inputs it can receive. As we can see from the parameter column
the highest count is for the less dense network MLP with 3 014
282 trainable parameters in context to other architectures.

Table 4. shows numbers of the wrongly classified objects for
multi-static case. The table having the same heading as single-
static case.

Results from Table 4. illustrates, that that architectures with
memory made more mistakes with crushed PET bottles than
glass bottles. But for more traditional networks the glass bottle
mistakes were higher. By changing the architectures we can
see that the improvement from simple architecture like MLP
(18 mistakes) to more dense networks like Transformer (4
mistakes) and ResNet (7 mistakes) decrease the total mistake
count by around 4 times. The mistakes in evaluation data could
be explained by the less dense networks or networks without
memory networks, did not have enough information or features
to extract to correctly classify different object materials.

V. CONCLUSION

The presented research shows that the different deep ANN
architectures can correctly process UWB-IR radar signal pro-
cessing to classify objects from different materials and can
distinguish different shapes of the objects.

The accuracy of the classification of the objects from differ-
ent materials is not only determined by the architecture of the

network used, but also by the selection of the channels used to
obtain the data. For some ANN architectures, the difference
in accuracy between the multi-static and single-static setup
is small, for the better performing networks Transformer and
ResNet the difference is 0.26% and 0.16%, while for the other
the difference can reach up to 1.58% for the LSTM architecture.
In real life, any improvement in accuracy means a significant
decrease of wrongly classified objects. For single-channel case
it would be even 62 objects (difference in LSTM and ResNet
classifications). In the multi-static setup, this difference is much
smaller - the Transformer incorrectly classifies 14 objects less
than MLP.

Looking at multi-static accuracy standard deviation (SD) we
can note that all values are above 1% but with a more denser
network and higher accuracy, the SD lowers. For example
transformer network was the most consistent with 1.02% SD
while the LSTM network had the lowest consistency with
5.99%. The high SD value was more associated with networks
that have memory. A possible explanation could be that one
iteration network remembers different information from other.

The different ANN architectures proved to improve the
classification accuracy with different benefits, like training time
range from 600 seconds to 2000 seconds or the parameter count
which represents the usage of computer processing power. With
more parameters, there are more calculations.

With taking into account all this information the most
favourable architecture for UWB signal classification would
be ResNet because of its high performance in multi-static and
single-static cases while still having a small training time of 75
seconds.

With Artificial neuron networks we can distinguish response
signals on various materials and correctly classify them and
if they are crushed or normal. This research helps distinguish
which ANN architecture would be more favourable for certain
an application with certain constraints to complexity, training
and processing time, and resources. Material classification has
multiple further research purposes in industry, for example, to
help at recycling plants, quality control, non-destructive control
of defects in different objects. This phenomenon is due to
different material electrical properties, which when in contact
with UWB signal changes the properties of the signal, like
amplitude, frequency, phase. From a signal processing point
of view, the research can be extended to investigate how a
multi-static UWB radar setup can help detect holes and cracks
inside the material, multi-layer structures, their size, and other
parameters.
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