
Sim2Real image translation to improve a synthetic
dataset for a bin picking task

Diana Duplevska∗, Maksims Ivanovs†, Janis Arents‡ and Roberts Kadikis§
Institute of Electronics and Computer Science (EDI)

Riga, LV-1006, Latvia
Email: ∗diana.duplevska@edi.lv, †maksims.ivanovs@edi.lv, ‡janis.arents@edi.lv, §roberts.kadikis@edi.lv

Abstract—The use of synthetic data is a promising solution
to the problem of the availability of real data needed for
the development of robotic systems. However, the precision of
the systems trained on synthetic data tends to decrease when
they are deployed in the real-life scenarios, which happens
due to the disparities between the artificial data and the real
world. Therefore, efficient methods for Sim2Real translation are
much needed for further progress in robotics. In our study,
we use Generative Adversarial Networks (GANs) to generate
more photorealistic data from the synthetic data created for
training deep neural networks to handle a bin picking task.
As a result, object detectors trained on the images improved
with the GANs with the optimal approach to image translation
demonstrate better performance than their counterparts trained
on the original synthetic data.

Index Terms—Sim2Real, image translation, synthetic data,
CycleGAN, bin picking

I. INTRODUCTION

Robotic systems in modern industries face rising demands
on speed, precision, size, adaptability, interoperability, and
cognitive features. Complying with such demands requires
the ability to swiftly improve and integrate various custom-
made modules of these systems [1], [2]. Today’s AI-based
perception modules require a large amount of training data;
moreover, changes in the environment of deployed systems
may lead to a domain shift, when the data used for training
is no longer a good representation of the real task the robot
needs to perform. A promising solution is the use of synthetic
data and simulations, which can facilitate the development
of smart robotic systems in various ways and at different
stages [3]. Acceleration of the design cycle, generation of
large amounts of the data at a low cost, and enabling safe
and fully controlled testing environments are only some of
the opportunities provided by the synthetic data [4]. While
the generation of synthetic data is a promising direction
of research and an enabling technology for future robots,
several unresolved challenges currently reduce the precision
of the robotic systems when deployed in real-life scenarios.
In particular, the differences between a simulation and the
real world typically are the main cause for the decrease in
precision: artificial lighting, sensor data recreation, virtual rep-
resentations of objects, physics simulations and other countless

This research has received funding from the ECSEL Joint Undertaking
under grant agreement 101007311 (IMOCO4.E). The Joint Undertaking
receives support from the European Union’s Horizon 2020 research and
innovation programme.

aspects of a real environment that cannot yet be fully recreated
in virtual worlds are all contributing to the issue of transferring
learned models from simulation to reality.

Data collection and processing plays an important role
in machine learning tasks including smart robot control, as
nowadays machine learning-based methods are widely used to
solve challenging tasks with the use of robots [5]. According
to [8], on average, more than 80% of time spent on AI
projects is dedicated the collection and processing of the data.
For robots, the data is an important element of their design,
as it makes it possible to anticipate events and prepare for
them in advance, therefore coping with harsh, dynamic condi-
tions and unforeseen situations. In essence, the data supports
the perception part that includes acquiring the information
about an unstructured environment, analysing this information,
extracting features, interpreting them, etc. This information
further on is taken into account in adaptive path planning
and motion control steps to cope with highly unstructured
environments [3] [7].

On the one hand, coping with unforeseen situations requires
special algorithms that are able to generalise over a variety
of scenarios. On the other hand, the data is the key factor,
and the success rate depends on whether the robot has had
a similar experience in the training process. The training
set, however, typically consists of annotated datasets; manual
labelling of such datasets is time-consuming manual labour,
and thus some corner cases might be missing from the dataset
due to a complicated training data acquisition process. Data
synthesis, however, facilitates this process and simplifies the
use of modern computer vision methods in industry.

Image synthesis or rendering is the process of generating
digital images from virtual scenes. The photorealism of ren-
dered images, videos, and computer games keeps increasing,
and the tools for creating virtual environments with included
physics simulation also become more user-friendly and afford-
able: for example, such tools as Blender, Unity, and Unreal
Engine can be used free of charge. Therefore, AI and computer
vision research community increasingly use such tools to
generate data or train systems in virtual environments directly;
however, the precision decrease can be observed when models
are trained on purely synthetic data when compared to real
data [9]. In smart robotic systems, this concern can be highly
connected to an issue that is commonly referred to as “reality
gap” [10]: even though reliable operation can be achieved



in simulations, trained models can perform unreliably when
transferred to a real environment. As real-world maintenance
times can be very short, a more reliable sim-to-real translation
is required.

In the present paper, we are concerned with improving
the photorealism of synthetic images by using Generative
Adversarial Networks [17] for image-to-image translation in
order to improve the precision of the object detection task.
The respective experiments performed in our study article
are a first step in the overall development of a bin-picking
pipeline, as their goal is to detect objects in 2D images that
are the most promising to end up in a successful grasp. The
proposed approach can be also utilised for further steps such
as instance segmentation and grasp pose estimation in 3D
world. Furthermore, the generated data contains sufficient 3D
information to be used by different approaches, for example,
to directly perform 6D object pose estimation [11]. However,
a detailed analysis of how our proposed approach contributes
to these steps is beyond the scope of this paper; therefore, we
envisage these as future work. Taking into account the above-
mentioned considerations, the rest of the paper is structured
as follows. In Section II, we describe related work; Section
III is concerned with the description of the data used in the
present study; in Section IV, we describe the improvements
of CycleGAN [TODO: add citation]; in Section V, we discuss
the visual quality of resulting CycleGAN images; Section VI
describes the methodology of object detection experiments;
Section VII is concerned with the results; finally, Section VIII
offers conclusions and directions for future work.

II. RELATED WORK

Reality gap is a topical problem for machine learning. To
reduce or almost completely bridge the gap, one can apply
methods of adapting the synthetic and real environments by
transferring the appearance of one environment to another.
Several domain transfer approaches have already proven them-
selves, namely, pixel-level [12] [13] and feature-level [14].
Feature-level domain adaptation focuses on learning domain-
invariant features between source and target domains or by
learning domain-invariant features which are represented by
a convolutional neural network (CNN) [15] [16]. Pixel-level
domain adaptation focuses on image stylizing - images from
a source domain are made to look like images from a target
domain. This domain adaptation is commonly based on image-
conditioned generative adversarial networks (GANs) [17].
These methods can be used to solve the simulation-to-reality
domain shift problem for robotic manipulation. To address the
reality gap in robotics, some projects use machine learning-
based domain adaptation [18] or randomization of simulated
environments [19]. With domain randomization, a deep neural
network is trained with randomized simulation parameters and
scene configurations, which produces differences in visual
appearance.

However, these approaches may change the image, includ-
ing removing the information that is necessary for a given task.
This is especially critical for tasks with robot manipulation or

object detection, because objects or their features may be com-
pletely or partially erased. For this reason, it is very common to
combine domain adaptation with additional techniques such as
a semantic map of the simulated image [20], which saves the
semantics of the task. Also, additional loss can be introduced.
Reinforcement learning task loss [21] enforces consistency
of task policy Q-values between the original and transferred
images to preserve information important to a given task. RL-
CycleGAN is trained jointly with the RL model and requires
task-specific real-world episodes. Another approach is to add
an object detector with perception consistency loss, which
penalizes the generator for discrepancies in object detection
between translations [22]. RetinaGAN works for supervised
and imitation learning, and it uses object detection as an
independent task for object-level visual domain differences.

In the present work, we used pixel-level domain adaptation,
which is based on GAN. We transferred the domain from
synthetic domain to real (Sim2Real) and checked the trans-
lation using the object detector; our objective was that the
objects should be preserved and remain recognizable as much
as possible.

III. DATA

We used several datasets in the present study, which are
described in the following.

A. Synthetic dataset

For the experiments in this work, a synthetic dataset as
described in [6] was generated, consisting of 8800 high-
resolution photo-realistic scenes as depicted in Fig. 1. For each
scene, an initially empty box was filled with randomly dropped
bottles by using Blender physics simulation engine, which
allowed to realistically generate random configurations of the
bottles in the container. After filling the box, the light intensity
of four different light sources was varied and the scene itself
was rendered from 16 different angles. For increased realism,
a Blender shader nodes were used as well as realistic textures,
reflections and indirect light bounces. Also for each scene
an annotation file was generated that includes every single
object in the scene, its rotation, coordinates, and the visibility
percentage.

Fig. 1: Generated image



B. Real-world dataset

Real-world data were acquired by randomly distributing
bottles in the container. For each of the acquired image, the
positions of bottles were altered by emptying and refilling the
box. The camera exposure time and intensity of lighting were
systematically modified to acquire high diversity of different
lighting conditions in the real-world dataset. In total, 2200
real images were acquired and manually labelled, out of which
1760 images were used for training Sim2Real and 440 images
for testing.

C. CycleGAN datasets

We used CycleGAN to translate synthetic bottle images into
the more realistic ones (Sim2Real transfer), thus creating sev-
eral new datasets. We used previously described synthetic and
real-world image datasets to train the CycleGAN translator.
Original real-world photos of the size 528x342 pixels, whereas
synthetic images are 1024x768; as the CycleGAN requires
identical size images for training, the preprocessing of the
images includes resizing of the images from both datasets
to 256x256 resolution. The reduction of the resolution was
also necessary due to the limited GPU resources available
for training CycleGAN. The next important aspect was the
disparity of the data: the real-world photos were taken directly
from above the box, whereas the synthetic ones were also
taken from above but at a slight angle. As the CycleGAN
doesn’t need paired data, it was not necessary to further
process the data e.g. by segmenting or labelling it. Therefore,
the only further change to the data was that we cropped the
background on the synthetic data, because after resizing to
256x256 pixels it was necessary to make sure that the objects
would be clearly visible. From the synthetic data set containing
8800 images, we took for training only synthetic data with
good lighting to make all the features of the objects clearly
visible to the neural network. Due to that, each dataset for
training CycleGAN included 1760 images.

(a) Real image (b) Synthetic image

Fig. 2: Examples of images from real (a) and synthetic (b)
dataset

IV. CYCLEGAN IMPROVEMENTS

To solve the “reality gap” problem, we used a Generative
Adversarial Network (GAN) [17] to generate realistic data
from our synthetic data by image-to-image translation. We
chose to apply the Cycle-Consistent Adversarial Network

(CycleGAN) in our task because this approach is meant to find
a mapping from domain X to domain Y without the images
being paired. This means that the data does not have to be
completely identical, making it easier to create datasets.

CycleGAN uses two mapping functions G : X → Y
to translate images in domain X to domain Y and inverse
mapping F : Y→X to translate images in domain Y to domain
X. There are additionally two discriminator functions DX and
DY that are used to discriminate whether an image is in a
respective domain. In our case, the X corresponds to synthetic
data, and the Y corresponds to the real data.

Fig. 3: CycleGAN data generation algorithm [29]

Each mapping function and its associated discriminator
function has a generative adversarial loss. And an inverse map-
ping introduces a cycle consistency loss to push F (G(X)) ≈
X and otherwise G(F (Y )) ≈ Y .

As a baseline, we used the CycleGAN code from Tensorflow
[26] and trained it on our datasets. After initial tests with the
baseline code, we made several improvements. The training
process was the same for all tests: we ran each CycleGAN
model for 20 epochs with the Adam optimizer using an initial
learning rate of 0.0002, β = 0.5 and λ = 10. The weights
were initialized with a Gaussian distribution with a mean 0
and a standard deviation of 0.02. For every epoch the dataset
was shuffled, and the buffer size was set to 1000.

1) Baseline - CycleGAN by TensorFlow: For the initial
training, we used a regular CycleGAN available in Tensor-
Flow. The main difference between the original CycleGAN
and the TensorFlow implementation of it was that the original
CycleGAN paper uses a modified ResNet-based generator
[29]. The TensorFlow implementation that we used is based
on a modified U-Net generator for simplicity. The U-Net can
be described as a convolutional autoencoder with skip connec-
tions. The encoder downscales the image using convolutional
layers, and the decoder equivalently upscales the latent space
back to the original dimensions. Every transposed convolu-
tional layer in the decoder has a so-called skip connection.
Skip connections are a way to help bypass the vanishing
gradient problem by concatenating the output of a layer to
multiple layers instead of only one.

We trained CycleGAN as implemented in TensorFlow to
transfer the style of the real photos to synthetic images of
bottles. As shown in Fig. 5, the resulting neural network
correctly translates and draws the shape of the box. However,
the bottles that are in the shadow on the synthetic image are
partially erased after the transfer. In the top part of the resulting



Fig. 4: U-Net network architecture

image, the neural network draws non-existent bottles. This is
a problem for computer vision tasks and for this reason we
could not use these images for testing with the object detector.

Fig. 5: Image before CycleGAN (input synthetic image) and
after (generated image)

2) Better CycleGAN: To improve the quality of the gener-
ated images, we added several data preprocessing functions.
In addition to image resizing, jittering, mirroring and data
normalization, we added colour data augmentation: random
contrast, brightness, hue and saturation. This was done to
reduce overfitting. We also added a central crop while main-
taining the image size of 256x256, which allowed the neural
network to focus on the bottles rather than the background and
box.

In order to let the generator train longer, we added Gaussian
noise to the discriminator input, so it was more difficult for
the discriminator to evaluate images. This method helps to
avoid early overfitting of the discriminator. The overfitted
discriminator evaluates even high-quality generated images as
fake, which causes imbalance in the neural network.

3) Checkerboard artifacts: The results of improved Cycle-
GAN can be used to train the object detector. However, there
are still some observable image defects, eliminating which
could improve the quality of the generated images. The most
noticeable problem appears to be a small pixel grid in the im-
age, which is known as checkerboard artifacts [24]. This effect
occurs because of the transposed convolution [25] operations
in a decoder. Therefore, to solve this problem, it was necessary
to replace the transposed convolution operation with another:
for example, resize the images and then add a common
convolutional layer. We replaced the transposed convolution
with a TensorFlow function tf.keras.layers.UpSampling2D to
upscale the images; by using this resizing with convolution,
we removed the checkerboard artifacts, yet the images became
blurred. This is a more critical problem for computer vision

tasks, because the edges of objects are blurred, and their
position is not clear. For this reason, we used the resized
convolution on all layers except the last one, where we retained
the transposed convolution. This method made the resulting
images less blurry, and the checkerboard grid was hardly
noticeable.

V. VISUAL QUALITY OF RESULTING CYCLEGAN IMAGES

We used Frechet Inception Distance (FID score) to evaluate
image quality by comparing the original data and fake images.
It is a performance metric that calculates the distance between
the feature vectors of real images and the feature vectors of
fake images that are generated by GAN generator; lower FID
score means smaller difference between real and fake images.
We used a TensorFlow implementation of the FID score to
evaluate images [23]. We compared CycleGAN generated out-
put images with real-world photos and with original synthetic
images. This allowed us to find out how similar the fake
images are to their original synthetic images and how much to
the real-world photos (i.e., the target domain). As the result,
synthetic images after Sim2Real transfer by CycleGAN should
look more realistic. All obtained FID scores are shown in a
table I.

We used 5000 images to measure the FID score. This
amount of the data was obtained using augmentation (random
horizontal and vertical flip, random rotation, random hue).
We compared images that were generated by CycleGAN with
original datasets (synthetic images and real photos), which
were also used to train the neural network. ”Baseline” dataset
was created by original TensorFlow example of CycleGAN.
”Augmented” dataset is the baseline code with data prepro-
cessing. Then we added a noise layer in discriminator and
got ”Augmented noise” dataset. Next dataset, ”Resized con-
volution”, is acquired by replacing the generator’s transposed
convolution layers with upsampling and convolution layers.
”Resized transpose” dataset has resized convolution on all
layers except the last one. Both worst FID results are with
”baseline” dataset. When comparing fake real images and
real photos (FID A) the ”resized transpose” dataset had the
best result. However, when comparing the generated images
with the original synthetic images (FID B), the ”resized
convolution” dataset had a better score.

Dataset Baseline Augmented Augmented
noise

Resized con-
volution.

Resized trans-
pose

Images

Fid A 230.28 171.41 137.27 141.03 112.26
Fid B 264.81 169.73 152.29 122.86 127.25

TABLE I: Evaluation for synthetic→ real. FID A evaluates
distance between generated real images (fake real photos) and
real photos, FID B is between generated real images and
synthetic images.



For further testing, we selected two different types of
CycleGAN (”Augmented noise” and ”Resized transpose”) to
compare the quality of the neural network on large images.
These two types of CycleGANs have different types of image
resizing in CNN part, as a result they affect the image in differ-
ent ways. For example, on small input data image defects are
invisible to the eye and FID score, but on large images there
may be defects and artefacts that affect the image semantics.
We applied these neural networks to original synthetic images
with a resolution of 1024x768 and bright lighting. Thus, we
got two more data sets: ”Augmented noise 1024x768” and
”Resized transpose 1024x768”. We cannot compare these data
sets with real photos due to the different sizes and different
semantics of the photos, so we only compared them with the
original synthetic image to show how much the image quality
has changed after cycleGAN.

Dataset Augmented noise (1024x768) Resized transpose (1024x768)

Images

FID 58.46 69.24

TABLE II: Evaluation for synthetic→ real with resolution
1024x768

As it follows from the low FID, the quality of large images
after Sim2Real transfer was better than of those from a
256x256 resolution dataset. On images of size 1024x768, the
pixel grid was less noticeable and had a smaller impact on
the FID score than blurred objects without pixel grid. As a
result, the dataset with checkerboard artifacts showed the best
results. However, these results are obtained by comparing only
large images with excellent lighting, yet the neural network
will be applied to synthetic images with different brightness
parameters. These datasets will be used in the future for the
object detector.

Images from next dataset had various lighting conditions,
from very bright to dark, and the light source position was
also changed. When applying Augmented noise CycleGAN
to these images, the semantics do not change, and the only
shortcoming is that there some artifacts that appear in the
background. Howeverk, when Resized transpose CycleGAN is
used on images with medium brightness, there appear artifacts
in the form of pixels around objects (bottles and the box),
which can interfere with the semantics of the image such as
the shape of the objects. The dataset in question received a
relatively high FID score, which allows us to conclude that the
image quality in this particular case is worse, and the dataset
might pose problems and result in decreased precision for the
object detection task.

Dataset Augmented noise (1024x768) Resized transpose (1024x768)

Bright
images

Dark
images

FID 80.11 124.83

TABLE III: Evaluation for synthetic→ real with resolution
1024x768 and different brightness levels.

VI. OBJECT DETECTION EXPERIMENTS

We conducted object detection experiments using YOLOv5
object detector implemented in the Ultralytics library [27].
Experiments were conducted on each dataset with YOLO5
Small, Medium, and Extra Large (XLarge) models pretrained
on COCO dataset [28]. As it follows from the name of the
models, they differ in size, which is 14, 41, and 166 MB,
respectively. During the training, 90 percent of the images in
a respective dataset were used for training, and 10 percent of
the images were used for validation.The training parameters
of the models were as follows: image size 640x640 pixels,
batch size 16, learning rate 0.01, momentum 0.937, weight
decay 0.0005. Each model was trained for 300 epochs with
early stopping after 100 epochs, which occurred if there was
no validation loss improvement. After training, the checkpoint
with the best performance on the validation set was tested on
the set of real-world images consisting of 300 test images.

VII. RESULTS

We report our results in IV using the standard metrics for
the task of object detection, namely, precision, recall, and
mean average precision (mAP) for bounding boxes. mAP is
calculated for an intersection over union (IoU) threshold of
0.5 and also averaged for IoU ∈ [0.5 : 0.05 : 0.95].

As it can be seen, the models trained on the Augmented
noise dataset consistently outperform both the models trained
on the Original synthetic dataset and the models trained on
the Resized transpose dataset in terms of precision, recall, and
mAP for IoU with threshold of 0.5 and mAP averaged for IoU
∈ [0.5 : 0.05 : 0.95] metrics. Furthermore, the performance
of the models trained on the Resized transpose dataset is
consistently worse than that of the models trained on the
Original synthetic dataset with the sole exception being the
better precision of the XLarge model. Interestingly enough,
larger models do not show better performance than their
smaller counterparts, which may indicate that their size was
too large for a comparatively small size of the training datasets.



Model Dataset Precision Recall mAP mAP
(threshold
0.5)

(avg for IoU
∈ [0.5 : 0.05
: 0.95]

Original
synthetic 0.689 0.894 0.742 0.447

YOLOv5
Small

Resized
transpose 0.615 0.838 0.632 0.245
Augmented
noise 0.731 0.905 0.777 0.48

Original
synthetic 0.693 0.802 0.72 0.42

YOLOv5
Medium

Resized
transpose 0.581 0.782 0.589 0.204
Augmented
noise 0.712 0.91 0.753 0.455

Original
synthetic 0.718 0.785 0.75 0.413

YOLOv5
XLarge

Resized
transpose 0.683 0.867 0.715 0.339
Augmented
noise 0.721 0.872 0.761 0.461

TABLE IV: Results of the object detection experiments.

VIII. CONCLUSIONS

In this study, we had the goal of improving Sim2Real trans-
lation methods by increasing the photorealism of synthetic
images of plastic bottles in a box designated for a bin picking
task. Initially we employed the original implementation of Cy-
cleGAN in TensorFlow for translating images; subsequently,
we employed the improved versions of CycleGAN, which
we designated as “Resized transpose” and “Augmented noise”
CycleGANs. To objectively assess the results of the Sim2Real
translation, we train YOLOv5 object detectors of three various
sizes on these datasets and test them on the real-world images.
While the object detectors trained on the Resized transpose
dataset perform worse than those trained on the original syn-
thetic data, their counterparts trained on the Augmented noise
dataset outperform the models trained on the original synthetic
data across all the metrics of interest, namely, precision, recall,
and mAP. These results demonstrate that CycleGAN can be
successfully used for Sim2Real translation for the datasets for
a bin picking task. Even though the performed object detection
experiments are only one step of the bin-picking pipeline,
the proposed approach is applicable for the proceeding steps
of the bin-picking pipeline which is envisaged as our future
work. Furthermore, we also intend to further improve the
photorealism of the translated images.

ACKNOWLEDGEMENTS

We would like to thank Andis Bizuns for his kind help with
organising the data.

REFERENCES

[1] Čech, M., Beltman, A. J., Ozols, K. (2019, September). I-mech–smart
system integration for mechatronic applications. In 2019 24th IEEE
International Conference on Emerging Technologies and Factory Au-
tomation (ETFA) (pp. 843-850). IEEE.

[2] Čech, M., Beltman, A. J., Ozols, K. (2021). Pushing Mechatronic
Applications to the Limits via Smart Motion Control. Applied Sciences,
11(18), 8337.

[3] Arents, J. and Greitans, M., 2022. Smart Industrial Robot Control
Trends, Challenges and Opportunities within Manufacturing. Applied
Sciences, 12(2), p.937.

[4] Choi, H.; Crump, C.; Duriez, C.; Elmquist, A.; Hager, G.; Han, D.;
Hearl, F.; Hodgins, J.; Jain, A.; Leve, F.; et al. On the use of
simulation in robotics: Opportunities, challenges, and suggestions for
moving forward. Proc. Natl. Acad. Sci. USA 2021, 118, e1907856118.
doi:https://doi.org/10.1073/pnas.1907856118.

[5] P. Racinskis, J. Arents, and M. Greitans, “A motion capture and imitation
learning based approach to Robot Control,” Applied Sciences, vol. 12,
no. 14, p. 7186, 2022.

[6] Arents, J., Lesser, B., Bizuns, A., Kadikis, R., Buls, E., Greitans, M.
(2022). Synthetic Data of Randomly Piled, Similar Objects for Deep
Learning-Based Object Detection. In: Image Analysis and Processing
– ICIAP 2022. ICIAP 2022. Lecture Notes in Computer Science, vol
13232. Springer, Cham. https://doi.org/10.1007/978-3-031-06430-2 59

[7] Torres, P.; Arents, J.; Marques, H.; Marques, P. Bin-Picking
Solution for Randomly Placed Automotive Connectors Based
on Machine Learning Techniques. Electronics 2022, 11, 476.
https://doi.org/10.3390/electronics11030476

[8] Cognilytica. Data Engineering, Preparation, and Labeling for AI 2019.
[9] Anderson, Jason. ”Methods and Applications of Synthetic Data Gener-

ation.” (2021).
[10] Jakobi, N.; Husb, P.; Harvey, I. Noise and The Reality Gap: The Use

of Simulation in Evolutionary Robotics. In Proceedings of the European
Conference on Artificial Life, Lausanne, Switzerland, 13–17 September
1999. doi:https://doi.org/10.1007/3-540-59496-5 337.

[11] K. Kleeberger, R. Bormann, W. Kraus, and M. F. Huber, “A survey on
learning-based robotic grasping,” Current Robotics Reports, vol. 1, no.
4, pp. 239–249, 2020.

[12] K. Bousmalis, N. Silberman, D. Dohan, D. Erhan, and D. Krishnan.
“Unsupervised pixel-level domain adaptation with generative adversarial
neural networks,”(2017) doi: https://doi.org/10.48550/arXiv.1612.05424.

[13] A. Shrivastava, T. Pfister, O. Tuzel, J. Susskind, W. Wang, and R. Webb.
“Learning from simulated and unsupervised images through adversarial
training,”(2017) doi: https://doi.org/10.48550/arXiv.1612.07828.

[14] B. Sun, J. Feng, and K. Saenko. “Return of frustratingly easy domain
adaptation,” doi: https://doi.org/10.48550/arXiv.1511.05547.

[15] Y. Ganin, E. Ustinova, H. Ajakan, P. Germain, H. Larochelle,
F. Laviolette, M. Marchand, and V. Lempitsky.(2016).
“Domain-adversarial training of neural networks,” doi:
https://doi.org/10.48550/arXiv.1505.07818.

[16] Bousmalis, G. Trigeorgis, N. Silberman, D. Krishnan, and
D. Erhan.(2016). K.“Domain separation networks,” doi:
https://doi.org/10.48550/arXiv.1608.06019 .

[17] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio. (2014). “Generative adversarial
nets,” vol. 27, pp. 2672–2680.

[18] Eric Tzeng, Coline Devin, Judy Hoffman, Chelsea Finn, Pieter Abbeel,
Sergey Levine, Kate Saenko, Trevor Darrell. (2015). ”Adapting Deep
Visuomotor Representations with Weak Pairwise Constraints” doi:
https://doi.org/10.48550/arXiv.1511.07111.

[19] Fereshteh Sadeghi, Sergey Levine. (2016). ”CAD2RL: Real
Single-Image Flight without a Single Real Image” doi:
https://doi.org/10.48550/arXiv.1611.04201.

[20] Konstantinos Bousmalis, Alex Irpan, Paul Wohlhart, Yunfei Bai,
Matthew Kelcey, Mrinal Kalakrishnan, Laura Downs, Julian Ibarz, Peter
Pastor, Kurt Konolige, Sergey Levine, Vincent Vanhoucke. (2017). ”Us-
ing Simulation and Domain Adaptation to Improve Efficiency of Deep
Robotic Grasping” doi: https://doi.org/10.48550/arXiv.1709.07857.

[21] Kanishka Rao, Chris Harris, Alex Irpan, Sergey Levine,
Julian Ibarz, Mohi Khansari. (2020). ”RL-CycleGAN:
Reinforcement Learning Aware Simulation-To-Real” doi:
https://doi.org/10.48550/arXiv.2006.09001.

[22] Daniel Ho, Kanishka Rao, Zhuo Xu, Eric Jang, Mohi Khansari, Yunfei
Bai. (2020). ”RetinaGAN: An Object-aware Approach to Sim-to-Real
Transfer” doi: https://doi.org/10.48550/arXiv.2011.03148.

[23] Heusel et al. [Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B. and
Hochreiter, S. (2017). ”Gans trained by a two time-scale update rule
converge to a local nash equilibrium. In Advances in Neural Information
Processing Systems” (pp. 6626–6637).

[24] Odena, et al. (2016). ”Deconvolution and Checkerboard Artifacts”,
Distill. doi:http://doi.org/10.23915/distill.00003.

[25] Wenzhe Shi, Jose Caballero, Lucas Theis, Ferenc Huszar, Andrew
Aitken, Alykhan Tejani, Johannes Totz, Christian Ledig, Zehan Wang.
(2016). ”Is the deconvolution layer the same as a convolutional layer?”
doi:https://doi.org/10.48550/arxiv.1609.07009.



[26] CycleGAN Tensorflow. Link: https://www.tensorflow.org/tutorials/
generative/cyclegan

[27] YOLOv5 implementation in Ultralytics library. Link: https://github.com/
ultralytics/yolov5

[28] Lin, Tsung-Yi, Michael Maire, Serge Belongie, James Hays, Pietro Per-
ona, Deva Ramanan, Piotr Dollár, and C. Lawrence Zitnick. ”Microsoft
coco: Common objects in context.” In European conference on computer
vision, pp. 740-755. Springer, Cham, 2014.

[29] Jun-Yan Zhu, Taesung Park, Phillip Isola, Alexei A. Efros. (2017). ”Un-
paired Image-to-Image Translation using Cycle-Consistent Adversarial
Networks” doi: https://doi.org/10.48550/arXiv.1703.10593.

https://www.tensorflow.org/tutorials/generative/cyclegan
https://www.tensorflow.org/tutorials/generative/cyclegan
https://github.com/ultralytics/yolov5
https://github.com/ultralytics/yolov5

	Introduction
	Related work
	Data
	Synthetic dataset
	Real-world dataset
	CycleGAN datasets

	CycleGAN improvements
	Baseline - CycleGAN by TensorFlow
	Better CycleGAN
	Checkerboard artifacts


	Visual quality of resulting CycleGAN images
	Object Detection Experiments
	Results
	Conclusions
	References

