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Abstract—The paper presents a novel forest stand volume 

(FSV) estimation approach based on remote sensing (RS) data 

when the forest inventory data used as reference are limited. 

The proposed approach consists of several steps, such as 

filtering of existing inventory data, identifying individual tree 

tops from the Canopy Height Model (CHM), classifying 

dominant tree species from Sentinel-2 data, and creating the 

polynomial regression model for stand volume estimation 

based on training data. The study area was located in the 

Zemgale region of Southeast Latvia, where the dominant tree 

species are Scots pine (Pinus sylvestris L.), Norway spruce 

(Picea abies (L.) Karst.), birch (Betula pendula Roth, Betula 

pubescens Ehrh.) and black alder (Alnus glutinosa (L.) 

Gaertn.). The FSV (m3/ha) for each dominant species was 

estimated, and the accuracy against the harvester data was 

evaluated by calculating the root mean square error (RMSE). 

Additionally, a cross-validation was performed using sparse 

and partially imprecise inventory data, and the RMSE errors 

were less than 20% for pine, 22% for spruce, 28% for birch, 

and 23% for black alder. In general, the developed approach 

can be used with species for which there is a sufficient number 

of inventory compartments in the analysis region where these 

species dominate. The proposed approach can be used in 

automatic workflows estimating forest inventory parameters 

from RS data. 

Keywords— Forest stand volume estimation, Canopy Height 

Model, Multispectral imaging, Remote sensing. 

I. INTRODUCTION 

FSV assessment is one of the key tasks of forest 
inventory performed in Latvia at least once in 20 years [1]. 
In many European countries including Latvia, forest 
inventory is performed by a taxator walking around the 
forest stands and estimating the main taxation indicators 
manually. Due to high labor costs, estimates of inventory 
indicators are obtained according to some general 
methodologies, without measuring each tree. On the 
contrary, several European countries are trying to introduce 
new RS-based solutions for obtaining inventory indicators. 
For example, Finland is coping very well with that, 
probably due to the domination of a fairly homogeneous 
pine and spruce forest [2-4]. In Ukraine, on the other hand, 
RS is used to divide forests into homogeneous units 
(primary units of forest inventory). Then the forest 
parameters (i.e. tree species composition, age, average 
height and diameter, growing stock volume, etc.) are 
assigned by trained staff on the ground through visual 
estimation or measurements [5]. In the Baltic States, such a 
solution has not yet been implemented, as it requires 
sophisticated data processing due to the extensive and 

diverse training data, as well as very high legal 
requirements for the accuracy of inventory parameter 
estimates (± 20% maximum error) [1]. 

The use of RS is hampered by the high required 
precision and the diversity of tree species in hemiboreal 
mixed forests [6]. Such forest inventories with direct use of 
freely available imagery (i.e., Landsat 8 and Sentinel-2) 
might not be compliant due to the moderate resolution 
products (i.e., 10-30m) and limited correlation of spectral 
variables with forest structural properties [7]. Combining 
spectral variables and airborne laser scanning (ALS) [6] or 
unmanned aerial vehicles (UAV) data [7-8] might lead to 
an increase of the estimation precision of the key forest 
parameters. ALS data are often used to obtain a tree height 
model for further segmentation or, in combination with 
statistical methods, to estimate inventory parameters [2, 10-
11]. For example, Noordermeer et al. developed a specific 
fitted regression predictive model based on tree height for 
spruce and pine stands using repeated ALS data [12]. 
Several authors [3-5, 11] have used different algorithms for 
estimating inventory parameters together with field data. 
Using data from UAV, e.g., Mosaicmill company offers 
forest inventory without fieldwork [8]. It could be an 
effective way to perform forest inventory, compared to 
fieldwork [9]. 

Depending on the availability of RS data, appropriate 
forest inventory estimation models can be developed. The 
RS data specifics should be carefully considered to obtain 
unbiased estimates of forest parameters at the level of 
accuracy desired by the user. Satellite images are still the 
most extensively used RS technology due to the low cost 
and frequent returns. Nevertheless, airborne laser scanning 
(ALS) combined with spectral and photogrammetric data is 
known to be particularly useful for the assessment of forest 
structural attributes. Research activities carried out in the 
past years [13], demonstrated estimated growing stock 
volume with a total rRMSE of 13.4% and species-specific 
volumes predicted with rRMSE of 36.6%, 46.5%, and 
84.9% for spruce, pine, and deciduous species, 
respectively. 

Another approach such as local weighted regression 
models is used for FSV estimation and assumes a general 
relationship between stock and tree crown height [14].  

In this paper, we offer an original stock assessment 
solution consisting of tree species classification and tree 
identification procedures and using a polynomial 
regression model with forest inventory data as support data. 
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Furthermore, the calculated forest stock values were 
validated against the harvester data. 

II. USED DATA 

LiDAR data were obtained from the Latvian 
Geospatial Information Agency. The acquired point cloud 
contains a network of points with coordinates (X, Y, H) in 
the LKS-92 coordinate system (EPSG:3059). The data for 
the western part of the study site were obtained in 2015, 
while for the eastern part in 2017. 

The Level-1C Sentinel-2 images of the study area in 
Latvia (see Fig.1) used in this research were downloaded 
from the Copernicus Open Access Hub [15]. They were 
acquired by the Sentinel-2A satellite on 25 April 2019 
(non-leaf period) and 4 June 2019, and the Sentinel-2B 
satellite on 27 September 2019. Ten Sentinel-2 bands were 
used, featuring 10- and 20-m spatial resolution, and 
obtained in the visible, near-infrared, and shortwave 
infrared spectral ranges (bands B2, B3, B4, B5, B6, B7, B8, 
B8a, B11, and B12). All the bands were resampled to the 
10-m resolution. The images were combined to process 
them together as a 30-band image. 

 

Fig. 1. Study area located in the Zemgale region of Southeast Latvia 

(center coordinated 56.50°N, 25.00°E) 

We exploited the Regular stand-wise forest inventory 
(RFI) [1] data (see Fig.1) obtained from the JSC “Latvia’s 
State Forests” (LVM), and filtered clear-cut forest stands 
for the study area by using a clearcutting mask [16], 9599 
in total. The RFI data contained coordinates of the forest 
stands (inventory polygons), tree species composition data, 
site fertility class, forest age group (VGR) in range (1..5), 
the total wood volume in cubic meters per hectare (VNOG), 
share coefficient (K10) for the dominant species in range 
(0..10) indicating the proportion of the number of trees in a 
forest stand, first storey forest density relative to the 
‘normal’ density (B10) in range (0..10). RFI data filtering 
by K10 ≥ 8; B10 ≥ 6; VGR ≥ 3 resulted in 1382 selected 
plots which were split into 971 (70%) training and 411 
(30%) test data sets for internal use, see Fig.1. Four tree 
species dominating in the analysis area were selected: Scots 
pine (Pinus sylvestris L.), Norway spruce (Picea abies (L.) 
Karst.), birch (Betula pendula Roth and Betula pubescens 
Ehrh.), and black alder (Alnus glutinosa (L.) Gaertn.). 

  Harvester data were available for individual trees in 
forest compartments within the study site carved during the 
winter of 2020/2021. Tree species, felling location, use 
type, and tree volume (m3) were recorded as variables. We 
used only harvester data from clear-cut forest 
compartments. Then we related the data to the inventory 
polygons obtaining the total harvested stock volume 
(m3/ha) (VHarv_Total) by species. The number of clear-cut 
forest compartments with dominating birch and black alder 

species was relatively low, hindering a statistically 
significant assessment. In total, the results were validated 
by 278 plots with the harvester data provided by LVM. 

III. METHOD 

The main workflow of the stock volume estimation 
contains three separate procedures: identification of tree 
canopy peaks, tree species classification, and preparation 
and exploitation of a regression model for each species, see 
below. The approach proposed is based on the assumption 
that some sparse and partially imprecise forest inventory 
data are available. The sparse and outdated forest inventory 
data contain information about forest stands with attributes 
such as tree species, volume, height, etc. It is necessary to 
obtain full and updated information about the area, in 
particular, the FSV. The data processing workflow consists 
of several steps and is presented in Fig.2. 

 

 Fig. 2. General workflow of the forest stock volume (m3/ha) 
estimation method. 

An image of size 1554x2725 (belonging to the study 
area shown in Fig.1) processing took several hours, the 
most computational resources are used in the step of 
species classification which exploited Dynland clustering 
[17]. 

A. Identification of tree canopy peaks 

To identify the tree canopy peaks, we have used the 
CanopyMaxima algorithm from Fusion/LDV software 
[18]. The following algorithms were used for 
CanopyMaxima tree detection from LiDAR data: 
GroundFilter, GridSurfaceCreate; CanopyModel, 
CanopyMaxima, and LDA2ASCII, DTM2ASCII for data 
format conversion. CanopyMaxima uses a canopy height 
model to identify local maxima using a variable-size 
evaluation window. The window size (WS) is based on the 
canopy height. This tool can only identify dominant and 
codominant trees in the upper canopy for some forest types. 
If the WS is too small, a lot of commission errors will 
occur. If too large, many treetops will be omitted [18]. 

The LiDAR point cloud was filtered to identify returns 
from the ground; then a gridded surface model was created 
with a spatial resolution of 1 m as it was the most suitable 
resolution for the available data; then a CHM with the 
spatial resolution of 0.5 m was created and filtered using 
the median 5x5 pixels filter as this option produced the 
highest accuracy regarding the trees’ detection. We chose 
the individual tree detection algorithm of CanopyMaxima 
to identify trees above h=6 m and we set the window size s 
according to the formula (1): 

s=0.8+0.05 ∙h (1) 



 

 

TABLE I. The FSV results of the R, RMSE, and rRMSE that were 

computed by the PR model 

Attributes Polygon count R RMSE rRMSE, % 

FSVPine 80 0.78 52 14 

FSVSpruce 146 0.76 59 15 

FSVBirch 30 0.52 71 19 

FSVBlackAlder 22 0.59 77 22 

B. Tree species classification 

To perform classification, we clustered the Sentinel-2 
images using the Dynland clustering algorithm [17]. Tree 
species classes were automatically assigned to the obtained 
clusters by using the algorithm described in [19]. To 
perform clustering of the whole study area, each second 
pixel was clustered on both axes using the Dynland 
algorithm [17], and other pixels were put into the formed 
265 clusters on a spectral similarity basis using k-nearest 
neighbors search. 

C. Preparing and exploiting regression model 

We used 963 inventory plots to prepare a regression 
model. Before performing the polynomial regression (PR), 
the basal area (m2) and forest stock volume (m3/ha) of each 
inventory plot was computed as defined in [20].  

The general formulas for calculating the basal area and 
forest stock volume are as follows: 

𝐺 =  0.7854 ∙   (
𝐻 

100
)

2

∙  𝑁 (2) 

where G - basal area (m2); H - average tree height (m) used 
instead of diameter breast height (DBH) due to strong 
relation between mean DBH and tree height (with bias of 
13% for Scots pine, 11% for Norway spruce, 7% for Silver 
birch, and 3% for Black alder) [21], and N - number of 
trees.  

𝑉 =
 𝑘 ∙ 𝐺 ∙ (𝐻 + 4)

𝐴
  (3) 

where V - forest stock volume (m3/ha); k is species- 
specific coefficient (pine: 0.390, spruce: 0.415, birch: 
0.385, black alder: 0.400) [20]; G - basal area (m2); A - the 
area of plot (ha).   

Basal area and stock volume were calculated for each 
species separately. We used individual trees and height 
from LiDAR and classification from Sentinel-2 to define 
species distribution and its area in each inventory plot.  

We used a 2nd-degree polynomial relationship between 
the response and predictor variables to avoid complexity 
and overfitting. The PR model was found to be suitable for 
the estimation of FSV at the study site, based on trial-and-
error using correlation measures. This model fits a 
connection between the dependent and independent 
variables as a 2nd-degree polynomial using the method of 
polynomial least squares [22]: 

E(𝑌)  = 𝛽0 + 𝛽1 X1 +𝛽2  X2  + 𝛽3 X1
2 +              

+𝛽4 X1X2+ 𝛽5 X2
2

  + ε 
(4) 

where Y is the dependent variable, E(Y) is the expected 
value of Y, β0 is the intercept, β1, β2, …, β5 are the regression 
coefficients of predictors X1, X2, and ε is the residual error. 
We used the inventory first storey stock volume (m3/ha) as 
our response Y. We computed first storey stock volume 

(m3/ha) and first storey average height obtained from 
individual trees and LiDAR CHM as our predictors X1 and 
X2. 

IV. RESULTS AND ACCURACY ASSESSMENT 

Performance of the models was examined using the 
correlation coefficient (R) (5), root-mean-square-
error(RMSE) (6), and relative root-mean-square-error % 
(rRMSE) (7) on the training and harvester validation plots: 
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/ 100,rRMSE RMSE y=   
(7) 

where xi represents the observed values for plot i; 𝑥 ̄ - the 
average observed values for all plots; 𝑦𝑖  - the estimated 
values for plot i; 𝑦̄ - the average estimated values for all 
plots; n is the number of plots; and i is the sample number. 

The model was cross-validated to compare the results 
obtained from different groups of predictor variables. The 
10-fold cross-validation (CV) involves splitting 1382 
selected plots into 10 subsets. One subset from each fold 
was used to test the model’s performance, while all other 
nine subsets were used for training the model. The results 
indicated that the rRMSE values for the PR model range 
from 10 to 28% (see Fig. 3) with an average RMSE score 
of 50, 57, 57, and 50 m3/ha for pine, spruce, birch, and 
black alder polygons, respectively. 

 Results were the most accurate for estimating pine (R= 
0.78, RMSE=52 m3/ha) and spruce (R=0.76; RMSE=59 
m3/ha) FSV, followed by birch (R=0.52; RMSE=71 m3/ha) 
and black alder (R=0.59; RMSE=77 m3/ha) polygons, see 
Tab. 1. Correlation graphs between total harvested volume 
VHarv_Total and total predicted FSV by dominant species  are 
demonstrated in Fig.4. Fig. 5 shows predicted FSV maps in 
the range 0 – 450 m3/ha. In general, underestimation of 
FSV with respect to inventory data is observed; it is 
understandable as the individual trees are counted in CHM 
without the possibility to take into account the second 
storey of the forest.  

 
Fig. 3. Sensitivity of the rRMSE values to different 10-fold values 

fitted with the PR method. 



 

 

V. DISCUSSION AND FURTHER WORK 

The available solutions from remote sensing for the 
evaluation of forest inventory parameters in the scientific 
literature can be divided as follows: 1) solutions that use 
only laser data together with reference data; 2) solutions 
that use only optical data with reference data; 3) solutions 
that use both laser and optical data with reference data. In 
our opinion, the best solution is to use as much data as 
possible, taking into account the advantages and 
disadvantages of each data type to evaluate specific 
inventory parameters. Such solutions are summarized in a 
literature review article [9].  

Most of the previous works, such as [2, 3], have 
presented methods for total forest stock volume estimation 
disregarding species distribution. On the contrary, this 
study demonstrates forest structural attribute assessment 
from Sentinel-2 and LiDAR data separately for four 
dominant species, using available inventory data as a 
reference. This is particularly beneficial for detailed forest 
inventory. 

One of the problems of the proposed solution is the 
different acquisition times of LiDAR and Sentinel-2 data. 
It is obvious that the latest Sentinel-2 data should be used 
as the base for the method. Special procedures should be 
developed to diminish the impact of outdated LiDAR data. 
The proposed method can be supplemented with growth 
coefficients with respect to old LiDAR data [9, 20]. 

The accuracy of the proposed method was assessed 
against pure pine, spruce, birch, and black alder stands. A 
lower rRMSE was obtained for pine and spruce stands, 14% 
and 15%, respectively, followed by deciduous stands of 
birch (19%) and black alder (22%). It should be taken into 
account that the error rate in mixed forest stands can be 
significantly higher in mixed forests. 

We believe that accuracy limitations can be reduced by 
using up-to-date LiDAR data with higher resolution or 
UAV-collected data. Sentinel-2 data from several seasons 
provide more information for the identification of tree 
species. However, the limited availability of cloud-free 
satellite images may impose restrictions on the use of the 
proposed FSV estimation approach.  

 

Fig. 4. Scatterplots of a total harvester (VHarv_Total) vs total predicted 
FSV (m3/ha) using PR in test polygons, by dominant species. 

 

Fig.5. FSV (m3/ha) prediction maps derived from LiDAR CHM, 
Sentinel-2 multispectral images using sparse and outdated forest inventory 
data (center coordinates 56.50°N, 25.00°E) 

  Future work will include an examination of the 
potential of using UAV-collected data for forest inventory.      
The potential of classification and FSV estimation for 
additional species should also be explored. 

VI. CONCLUSION 

In this paper, we have proposed a novel stock volume 
estimation approach from Sentinel-2 multispectral images 
and LiDAR CHM using available sparse and outdated 
forest inventory data as the reference. Our approach is 
based on the recently proposed Dynland clustering 
algorithm, identification of tree canopy peaks, and using a 
regression model for stock volume estimation. Experiments 
showed that a lower RMSE can be achieved using 
polynomial regression on the chosen training set for forest 
stands. The highest correlations (R=0.78, R=0.76, R=0.52, 
R=0.59) for four tree species (pine, spruce, birch, and black 
alder) were obtained in this case. The proposed approach 
facilitates the estimation of other inventory parameters of 
forest stands separately for each species of interest. 
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