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Abstract—Good hand hygiene is one of the key factors in
preventing infectious diseases, including COVID-19. Advances
in machine learning have enabled automated hand hygiene
evaluation, with research papers reporting highly accurate hand
washing movement classification from video data. However,
existing studies typically use datasets collected in lab conditions.
In this paper, we apply state-of-the-art techniques such as
MobileNetV2 based CNN, including two-stream and recurrent
CNN, to three different datasets: a good-quality and uniform
lab-based dataset, a more diverse lab-based dataset, and a large-
scale real-life dataset collected in a hospital. The results show that
while many of the approaches show good accuracy on the first
dataset, the accuracy drops significantly on the more complex
datasets. Moreover, all approaches fail to generalize on the third
dataset, and only show slightly-better-than random accuracy on
videos held out from the training set. This suggests that despite
the high accuracy routinely reported in the research literature,
the transition to real-world applications for hand washing quality
monitoring is not going to be straightforward.

Index Terms—CNN, movement classification, hand washing,
hand hygiene

I. INTRODUCTION

Good hand hygiene is one the most important factors in
preventing transmission of germs and associated infections,
including COVID-19. The World Health Organization (WHO)
has published recommended practices [10] for hand washing
and alcohol-based hand rubbing, both of which describe the
same six main hand washing steps required to ensure thorough
cleaning of hands. Unfortunately, even medical professionals
often fail to observe these guidelines, leading to a large number
of hospital-transmitted infections.

Automated hand-washing quality monitoring is therefore
urgently needed to improve compliance and to prevent these
infections. A key task here is to be able to recognize all
six key washing movements in order to detect whether they
all have been executed. This has been an active area in the
recent years, with multiple papers reporting high hand washing
movement recognition accuracy using CNN classifiers [2], [7],
[8]. These papers typically use datasets collected in a lab, such
as the Kaggle challenge dataset [1], and utilize CNN based on
pre-trained models such as MobileNetV2, extending it with a
multi-stream network architecture, or incorporating recurrent
elements such as LSTM.
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Our goal is to apply these state-of-the-art techniques to more
complex datasets, with emphasis on-light weight classifiers
that can be run on mid-range smartphones rather than require
powerful hardware accelerators. To achieve this goal, we
formulate five intuitive hypotheses:

• H1: It is possible to successfully apply classifiers suitable
for the lab-collected Kaggle dataset to other datasets,
specifically: (1) to a more diverse lab-collected dataset,
and (2) to a real-life dataset.

• H2: Adding temporal information through optical flow or
time-distributed inputs increases classification accuracy.

• H3: Using extra layers increases classification accuracy,
at the cost of additional training and inference duration.

• H4: A full retraining of the base model increases classifi-
cation accuracy, at the cost of additional training duration.

• H5: Out-of-the-box Keras data augmentation layers are
sufficient for good generalization performance.

We investigate the hypotheses using three different CNN
architectures1:

1) Baseline MobileNetV2 CNN with RGB inputs;
2) Two-stream MobileNetV2 based CNN with RGB and

optical flow inputs;
3) Recurrent MobileNetV2 based CNN with GRU elements

and time-distributed RGB inputs.
In order to do that, we train and evaluate the CNN on three
different datasets:

1) The Kaggle challenge dataset [1];
2) A lab-collected dataset from METC [5];
3) A large-scale real-life dataset from Pauls Stradins Clin-

ical University Hospital [6].
Unfortunately, the results (Section IV) show evidence against
all five of these hypotheses. For example, techniques that show
good performance on the “simple” lab dataset show mediocre
results on the more complex one, and fail to generalize on the
real-life dataset. This outcome suggests that it is not straight-
forward to scale the approaches from the current research
literature to real-life applications, and that the published results
in this area should be taken with a grain of salt. This negative
result is the main scientific contribution of this paper.

The paper is structured as follows: we overview related work
in Section II; describe our approach in Section III, present
results in Section IV, and summarize the results in Section V.

1The code used in our experiments is available at https://github.com/
edi-riga/handwash.
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Fig. 1: The six key movement of hand washing [10].

II. RELATED WORK

Deep neural networks have demonstrated state-of-the-art
results in many image classification tasks [4], including appli-
cations in hand hygiene monitoring [11], [12]. There has been
a surge of interest in attempts to classify the hand washing
movements according to the 6-step guide by the WHO (Fig. 1).

Prakasa & Sugiarto [8] extract frames from videos, convert
the resulting images from red, green, and blue (RGB) channels
to hue, saturation, and value (HSV) channels to obtain image
component with high contrast on the skin human region (the
hue channel), and classify them using a custom CNN classifier.
However, the dataset they use consists of a single instructional
video, therefore the generalization accuracy is not adequately
tested.

Nagaraj et al. [7] design a three-stream network archi-
tecture, based on a classical papers on two-stream CNN
fusion [3], [9]. The three streams utilize RGB frames, optical
flow frames, and histogram of gradients as the inputs, in this
way incorporating spatial, temporal, as well as object-level
information from the videos. The authors use the full Kaggle
dataset [1] to show that their approach performs better of than
any of the three modalities used alone, and achieve 86.6 %
accuracy on the hand wash dataset. We note that accuracy is
measured for 12-class separation, and is likely to be above
95 % if just 7 movement classes were considered, as we do in
the present paper. (The 12-class problem arises when left-hand
and right-hand washing movements are treated as separate
classes.) The authors provide a GitHub repository with an
implementation of the fusion classifier.

Another recent study by Cikel et al. [2] uses the publicly
available subset of the Kaggle dataset [1] with hand-washing
movements to train and evaluate 3 models consisting of a
Resnet-152 CNN encoder and a decoder based on a 3-layer
LSTM, using as input the RGB frames of the videos for the
first one, the optical flow for the second one, and a two-stream
input made up of both RGB frames and optical flow for the
third one. The RGB network achieves an accuracy of 97.33%.

Our own work on the hospital dataset [6] introduces the
dataset itself, as well as reports 75 % classification accuracy
from some initial experiments. However, the F1 score of those

results is lower than 0.75 (though still above 0.5) because of
some class imbalance. Most importantly, this previous work
does not attempt to measure the generalization performance of
the classifier by evaluating it on users and washing locations
that are not part of the training data.

III. METHODS

A. Datasets

We use three datasets in our work (Table I). One represen-
tative image from each datasets is shown in Fig. 2.

The “Kaggle” dataset used in this work is downloaded from
the Kaggle “Hand Wash Dataset” [1] challenge page. The
complete dataset has 292 hand washing episodes; however,
we use the freely available part of it, with just 25 episodes.
Each episode has high-quality scripted hand washing videos
corresponding to each of the hand washing steps defined by
the WHO [10].

The METC dataset was collected in July–August 2021, as
part of a user feedback evaluation study [5]. The main goal
of the experiments is to investigate the effect from mobile
application based feedback during the washing process. The
videos were recorded in multiple sessions with multiple users,
but all experiments took place in the same location (i.e. had
the same sink). Most of the users were medical students
with previous knowledge about the expected hand washing
steps, and were shown a reminder before the study, as well
as visual aids on the smartphone screen during the washing
procedure. However, while were knowledgeable and were
instructed to complete the task to the best of their ability,
imperfect execution was still present. A few users did not even
complete all six washing movements.

The hospital dataset shows medical staff washing their
hands as part of their normal job duties. These videos from
real-life conditions include hand washing positions that are
partially out out the frame or partially occluded, as well as
low and variable lightning conditions. In this data, Imperfect
and incomplete execution of the washing steps is a rule rather
than an exception.

The data in the METC and hospital datasets is annotated
according to the hand hygiene guidelines from the WHO [10],
which identifies the six key movements (Fig.1). The move-
ments and hand positions that do not corresponds to any of
these six are labeled with the code 0 (“other”).

TABLE I: Datasets.

Parameter / DS Kaggle METC Hospital

Washing episodes 25 213 3185
Users ≤25 71 many
Locations ≤25 1 9
Environment Lab Lab Real-life

Frame dimensions 720x480 640x480 640x480,
320x240

FPS 30 16 30



(a) Kaggle dataset (b) METC dataset (c) Hospital dataset

Fig. 2: Example images from the three datasets, with movement class label “1”.

B. Data preparation

Some classes in the Kaggle dataset is merged so that left-
hand and right-hand movements belong to the same class. The
wrist washing movement (“step 7”) is not labeled of the other
datasets, so it is treated as the “other” movement (class 0).

The data from the METC dataset is separated in segments
with continuous sequence of frames that all have the same
class label. As the dataset is annotated in real-time, by a
human operator during the data collection experiments [5],
there is some reaction time that needs to be discounted. For
this purpose, we remove a 1 second long video segment every
time the class label changes in the data-stream.

The hospital dataset data is similarly separated in contin-
uous sequences. This dataset has multiple annotators for most
videos. Only parts of the dataset where two or more annotators
have assigned matching class labels are used for CNN training
and evaluation. We do not attempt to preprocess the data to
improve the image quality, normalize the light levels, etc.

While the initial resolution of the videos is different, before
using it as inputs to the CNN models, all frames are scaled
down to 320x240 pixels using the standard Tensorflow func-
tionality (with “interpolation” as the resize method).

Each dataset is split in two parts; one part (30 %) is used
as the test data, and the other part as training and validation
data. The METC and the hospital datasets have new, previously
unseen users included as part of the test data. The hospital
dataset comes with location information for each video. We
split hospital dataset so that the test subset has videos from
different locations than the training & validation subset.

Random sampling and class weighting is performed to
account for the disbalance in some of the datasets. First,
in the hospital dataset, a random portion of the data with
class label 0 is dropped to increase the training speed of the
classifiers. Subsequently, class weighting is used to deal with
the remaining imbalance in all datasets.

Finally, the data is augmented with random flips and
rotations during the training stage in order to improve the
generalization performance of the classifiers.

C. Architectures

We use the Keras framework and select the pretrained
MobileNetV2 model for baseline performance measurements
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Fig. 3: Baseline CNN architecture.

(Fig. 3). MobileNetV2 architecture is selected because it is
lightweight and has a good performance / accuracy tradeoff
in many applications. The weights of the MobileNetV2 model
are pretrained on the ImageNet dataset. The classifier takes
RGB images as inputs; see Table II for details. On top of the
base line classifier, one to three dense layers are deployed.
The top layer has 7 units and uses the softmax activation
function. In addition to this baseline, we investigate these more
complex architectures:

• Two-stream network (Fig. 4), with two MobileNetV2
models in the base, joined by a fusion layer, and with
one or more dense layers on top of the fusion layer;

• Recurrent CNN (Fig. 5), with a time-distributed layer
uniting a number of base models, with GRU used as the
memory unit.

The baseline network only takes a single frame as the input,
while the more complex architecture also utilize temporal
information as part of their inputs. The existing literature [7]
argues that temporal information is required for accurate
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Fig. 4: Two-stream CNN architecture.
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Fig. 5: Recurrent CNN architecture.

TABLE II: Neural network parameters.

Parameter Value

All networks / default values
Base model MobileNetV2
Initial weights ImageNet, 224x224
Input image dimensions 320x240x3
Data augmentations Rotations, flips
Num. dense layers 1

Layers retrained 1 (“top”) or
all (“full”)

Num. epochs 20
Batch size 32
Optimizer Adam
Loss function Cross entropy
Num. classes 7

Two-stream networks
Streams RGB & optical flow
Fusion Before dense layers
Optical flow type Farneback
Optical flow step 0.33 sec

Recurrent networks
Recurrent element GRU
Frame step 0.2 sec
Num. frames 5

Extra layer networks
Num. dense layers 3

Transfer learning networks
Num. epochs 10

movement recognition, as it is not possible to differentiate
between the movement 1 and movement 3 from a single image.

D. Additional Experiments

We perform two following additional experiments using the
architectures as above.

• Extend the top of the network with two additional dense
layers with 128 neurons each. A dropout of 0.2 is used
after the two intermediate dense layers.

• Transfer learning: measure the generalization perfor-
mance across datasets, before and after 10 epochs of fine
tuning. Only generalizations from the less complex to
more complex datasets are investigated.

Finally, we also peform initial work on investigated a few
more approaches. As these additional experiments fail to show
notable improvements on the results, we do not report the
detailed results of these initial investigations in the results
Section.

• Use more powerful base networks. We experiment
with Xception and InceptionV3 models instead of Mo-
bileNetV2. These more complex models show worse
performance/accuracy tradeoff in our experiments, and as
a result are less suitable for our application goals.

• Enable regularization. We set the default non-zero Keras
regularization coefficients on the dense layers (the
compined L1 & L2 parameter, for both and kernel and
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Fig. 6: F1 scores of the different CNN architectures.
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Fig. 7: F1 scores of the different CNN architectures with two additional dense layers.
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Fig. 8: F1 scores of the different CNN architectures, transfer learning.



activity regularization), and measure generalization accu-
racy after the change. No improvement is detected.

IV. RESULTS

A. Main Experiments

Fig. 6 shows the main results. Due to size limitations,
we only report F1 scores in this paper. Contrary to the
expectations, the best performance on Kaggle and METC
datasets is achieved by the baseline model, which only uses
a single frame as the input (0.96 F1 score on Kaggle, in
Fig. 6b, 0.64 F1 score on METC, in Fig. 6c). In particular,
full retraining usually improves the accuracy of the baseline
classifiers, while decreases it on the more complex classifiers.
This suggests that the more complex ones are more likely to
overfit.

Most concerningly, none of the approaches show even
average performance on the test data on the hospital dataset
(Fig. 6d)). The F1 score of a random classifer is 1/7 =0.14;
the best real classifier shows F1 score of only 0.21. The poor
accuracy is not caused by a failure to learn: the F1 scores on
the validation data is above 0.95 in some of the experiments.
The problem is in the poor generalization performance. We
further verified this by conducting a separate experiment,
which showed that the accuracy is greatly improved the test
data consists of a set of videos taken using a camera location
that is already present in the training data.

As the two-stream network does not show a major improve-
ment on the two other approaches in any of the experiments,
and its characteristics are in-between the other two, we exclude
this network from further experiments.

B. Additional Dense Layers

The results (Fig. 7) of these extended classifiers show the
same pattern as the resuls in the main experiments. In absolute
values, the F1 scores are a few percent worse on the average,
again suggesting that the extra complexity added by the extra
layers makes the classifiers more likely to overfit.

C. Transfer Learning

The results (Fig. 8) show that one of the retrained models
achieves the best performance on the METC dataset among all
experiment groups (0.65 F1 score) and one on the hospital data
(0.27 F1 score). However, other than this, the lessons learned
from attempting to transfer the training between datasets is
not encouraging. None of the classifiers show acceptable
performance before retraining them on the new dataset. After
retraining, the accuracy on the new dataset is on the average
similar to the accuracy when the classifier is trained straightly
from the MobineNetV2 base. Moreover, the recurrent CNN
initially trained on Kaggle data completely failed to learn on
the hospital data (Fig. 8c). This suggests the classsifications
learned by the models is not transferrable to new situations.

V. CONCLUSIONS

We formulate five intuitive hypotheses in the Introduction
of this paper, and evaluate them using three different datasets
and multiple CNN architectures. Surprisingly, the evaluation
shows evidence against all of these hypotheses. Lightweight
CNN classifiers that show good results on the Kaggle dataset
(>0.95 F1 scores) demonstrate mediocre performance on a
more complex lab-based dataset (0.5–0.6 F1 scores), and fail
to generalize on a real-life dataset (H1), despite applying the
Keras data augmentation layers to reduce overfitting (H5).
Adding temporal information (H2) or more layers (H3) typ-
ically reduces the generalization performance, which can be
explained by the more complex models being more vulnerable
to overfitting. The effect of full retraining (H4) depends on
the architecture. These results show that the dataset is in
fact more important than the approach when evaluating hand
washing movement classification accuracy, and that translating
the existing work on hand washing movement classification
from the lab to the field is not straightforward. The future
work must focus on discovering the root causes for the poor
generalization performance.
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