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Abstract—Compact wrist-worn devices that can continuously
measure human bio-parameters such as heart rate offers valuable
health information and facilitate healthcare outside clinical set-
tings. Bioimpedance is a promising alternative sensing modality
for vital signs monitoring in wearable devices but requires close
proximity to the subject’s skin. The current study evaluates the
suitability of different types of electrodes for on-wrist heart-
rate measurements via bioimpedance. We compare copper, gold,
and stainless steel electrodes with smooth and bumpy surfaces.
To this end, we develop a signal-to-heart-rate data processing
pipeline and a SNR-based metric that algorithmically evaluates
the signal’s quality. The results show that while there is a clear
trend in the data that supports the selection of stainless steel over
other metals and bumpy over smooth electrode surfaces, most of
the variance in the signal quality comes from factors other than
the electrode type.

Index Terms—electrodes, bioimpedance, heart rate, wearable
device

I. INTRODUCTION

Cardiovascular illnesses are among the most widespread
diseases in the world, necessitating the development of equip-
ment that can more readily monitor crucial bio-parameters
such as heart rate, blood pressure and breathing. Although this
equipment is readily available in medical facilities, patients
are typically no longer monitored after they leave these facili-
ties [1]. Bioimpedance measurement is a promising technique
for detecting not just the composition of tissues, but also the
heart rate and other vital signs in human subjects. Compared
to other techniques for vital signs monitoring, bioimpedance
has the potential to enable wearable devices with lower power
consumption, which is a significant benefit for continuous
measurements. As a result, bioimpedance enabled wrist-worn
measurement devices hold the promise of conveniently mon-
itoring human bio-parameters outside of clinical settings, and
also to other functions such as exchange of data via Body Cou-
pled Communication (BCC) [2]. However, the development of
bioimpedance-enabled wearable devices is challenging due to
several factors, such as the choice of appropriate electrodes,
their configuration, location, power supply, the weight of the
whole system and its accuracy.

This work is an experimental study that examines the
impact of the electrode type for heart rate monitoring from
bioimpedance signals obtained on the wrist. To put it in the
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context of related work, the problem of wrist-based non-
invasive heart rate measurement has attracted a large attention
from the research community. Nine different methods includ-
ing electrocardiography (ECG), photoplethysmography (PPG),
ultrasound, and impedance plethysmography are described in
De Pinho Ferreira et al. [3]. The mechanism behind impedance
plethysmography relies on measuring the impedance changes
in tissue caused by changes of blood volume in arteries. During
the systolic phase of the heartbeat, blood flow increases,
resulting in a lower impedance, and vice versa for the diastolic
phase. The impedance changes are measured by passing a
low voltage alternating current (AC) through human tissue and
observing how the impedance changes with time. It was found
that results depend on the size and the positions of the elec-
trodes [3]. Typical AC frequencies are from 10 to 100 kHz.
Both two-electrode (bipolar) and four-electrode (tetrapolar)
setups are possible. The tetrapolar setup is preferable, because
it allows to eliminate contributions from the electrode–tissue
interface. In low frequencies and with small electrodes these
contributions can dominate the measurement [4]. However,
two-electrode setups allow measurement devices with smaller
form factors, and reduce the probability that the contact
between skin and the electrodes is lost. For wearables, so-
calling “polarizable” electrodes that do not allow the passage
of charge carriers through the skin-electrode interface are
typically used. In contrast, ECG typically uses electrodes
that rely on reduction or oxidation reactions, and are not
suitable for long-term wearing as they suffer from chemical
degradation. The paper by Cho et al. [1] is one of the first
where feasibility of wrist-worn bioimpedance measurement
devices is investigated. A small-scale four electrode setup is
used and electrode locations are optimized. The performance
of such wearable devices depending on electrode size, spacing
and AC frequency is investigated in Wang et al. [5]. Alharbi et
al. [6] had conducted a relatively large-scale study with 51 test
subjects. Multi-stage signal processing procedure for heartbeat
detection was adopted and results were validated with a digital
blood pressure measurement device. In many existing works,
for instance, in Huynh et al. [7] similar setups are used to
measure both, pulse-wave velocity and the heart rate. In other
works, for example, in Gonzalez-Landaeta et al. [8] heart
rate detection algorithms are applied to bioimpedance mea-
surements performed with a tetrapolar electrode connection
with feet as the contact surface.



Fig. 1: Electrodes used in the experiments.

Compared to the studies mentioned above, the current
study utilizes a bipolar electrode setup in contrast to the
typical tetrapolar one. Our main motivation lies in the ob-
servation that the tetrapolar setup sacrifices user convenience
for measurement accuracy. We envision that a smaller and
better-fitting wearable strap is possible when using just two
electrodes. We focus on the material and surface type of
polarizable electrodes, and experimentally investigate stainless
steel, gold and copper electrodes with both smooth and bumpy
surfaces. Empirical mode decomposition (EMD) is utilized to
decompose the raw signals and obtain beats-per-minute (BPM)
information from the raw signals. Signal-to-noise ratio (SNR)
on the autocorrelation function of the processed signals is used
to assess the quality of each signal.

The paper is structured as follows: Section II describes
the experimental setup and data analysis methods; Section III
presents and discusses the results; Section IV concludes the
paper.

II. METHODS AND MATERIALS

A. Electrodes

We started the work by creating several pairs of electrodes
(Fig. 1) from different materials. The dimensions all electrodes
are 10 x 10 x 0.4 mm. Three types of materials are used: (1)
stainless steel; (2) copper; (3) copper electroplated with a thin
gold layer, referred to as “gold electrodes” further in this work.

On top of the different materials, two types of electrode
surfaces are investigated: (1) smooth surface; (2) rough surface
with mechanically created bumps. Several small bumps are
created on the surface of each electrode. Overall, we compare
six types of electrode pairs.

B. Measurements

We measure bioimpedance with the Zurich Instruments
MFIA 500 kHz / 5 MHz Impedance Analyzer [9]. The equiv-
alent electrical circuit of the measurement setup is shown in
Fig. 2. We use 100 kHz sine wave with amplitude of 0.3 V
as the generated signal, as these are common values for
bioimpedance applications [10], [11]. The measurement setup
is as follows (Fig. 3):

1) A pair of each electrode type is selected and soldered
to test leads. The test leads are put in a test fixture
to keep an approximate distance of 1 cm between the
electrodes. The distance is selected to match potential
wearable applications in the future.

2) The electrodes are cleaned with alcohol and a thin layer of
ECG gel [12] is applied on the surface of each electrode.

Fig. 2: The equivalent circuit of the measurement setup.

Fig. 3: Conceptual overview of the experimental setup with the
electrodes and MFIA impedance analyzer.

3) A volunteer test subject places the electrodes on their left
hand wrist, and the experimenter applies a tourniquets to
fasten the electrodes firmly in place.

4) The test subject also takes a Maxim Integrated
MAX30102 [13] PPG sensor and clamps it between his
thumb and forefinger to record his ground-truth heart rate.

5) The system is briefly (≈ 1 min) allowed to settle.
6) The test subject sits still for 20 seconds while

bioimpedance and PPG signals are recorded.
We record the signals on two male volunteers, for each of
them on three different days.

C. Data Processing

Four different bioimpedance signals are recorded by the
MFIA device: real part and imaginary part of the com-
plex impedance: Real(Z) and Imag(Z); magnitude of the
impedance: ABS(Z); and phase of the impedance: Phase(Z).
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Fig. 4: Overview of the data processing pipeline.

A multi-stage approach in MATLAB is implemented in order
to evaluate a human heart rate from these raw bioimpedance
signals (Fig. 4).

1) Empirical Mode Decomposition: The raw signals are
not immediately usable for heart rate detection via peak
detection or similar methods due to the large amount of noise.
Not all standard techniques for noise removal are applicable
to the problem. For instance, FFT-based bandpass filtering
cannot be used because the heart rate signal is not easily
decomposable in low-frequency sine waves. Hence, a key
technique in our arsenal for removing the noise is Empirical
Mode Decomposition (EMD), which is useful for processing
non-stationary, non-linear signals. As a result of EMD, the so-
called intrinsic mode functions (IMFs) corresponding to differ-
ent frequencies and a residue are extracted. The IMFs represent
oscillating components of various magnitudes embedded into
the analyzed signal. A detailed explanation of EMD and its
applications in medical signal processing can be found in [14]
and [15]. Signal, decomposed into n number of IMFs and a
residual term r can be written as follows:

x(t) =

n∑
j=1

IMFj + rn (1)

The emd MATLAB function is used to extract the IMFs and
the residual term. Signal noise, presumably contained in the
lower-order IMFs is filtered out by summing only the higher
order IMFs, specifically, those with orders from two to five.

2) Signal Quality Estimation: The result of the EMD still
contains a relatively large amount of noise. We run a two-
stage process to estimate the quality of the EMD result. First,
we apply autocorrelation on the EMD signal. We expect to
see peaks in the autocorrelation result due to the periodical
nature of the heart rate signal, with the period between peaks
corresponding to the heart rate period in seconds. Intuitively,
the more pronounced these peaks are, the more suitable the
signal is for heart rate detection. To measure the intensity of
the peaks, we apply FFT to the autocorrelation result and use
the magnitudes of the result. Subsequently, we search for a
peak amplitude Asignal in the FFT in the frequency range
from 0.66 Hz to 1.5 Hz. This frequency range corresponds to
heart rate of 40 to 90 BPM, as for an adult subject in a resting
state the true BPM value is expected to be in this range. The
signal-noise-ratio (SNR) is then calculated as:

SNR = 20 · log10
Asignal

Anoise
, (2)
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(a) Copper, bumpy (SNR 73.2 dB)
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(b) Copper, smooth (SNR 93.1 dB)
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(c) Gold, bumpy (SNR 84.8 dB)
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(d) Gold, smooth (SNR 75.7 dB)
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(e) Stainless steel, bumpy (SNR 87.1 dB)
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(f) Stainless steel, smooth (SNR 88.2 dB)

Fig. 5: Heart rate signal depending on the electrode type. EMD data of the bioimpedance signal (Real(Z)) shown in blue, simultaneously
measured PPG data shown in purple, along with peaks detected on the PPG data and inverted peaks on the EMD data. Representative data
from a single test subject in a single day.
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Fig. 6: Comparison between the BPM estimated by our method and
the BPM measured by the PPG sensor. Same subject and day as in
Fig. 5. Peak detection applied on the best signals selected by SNR.

where Asignal is the amplitude at the peak frequency and
Anoise is the average amplitude at all other frequencies,
excluding the DC component.

3) Heart Rate Estimation: From the four signals that are
recorded in each experiment, the signal with the highest SNR
is used for the heart rate estimation. The heart rate in beats per
minute (BPM) is estimated using inverted peak detection on
the EMD signal using the findpeaks MATLAB function on
the signal multiplied by −1. A minimal peak interval of 0.7
seconds is used. To obtain BPM from the peaks, we calculate
d, the average time difference between peaks detected in the
experimental interval. The duration of the interval in minutes
is divided by this to estimate the BPM value: BPM = 60/d.

III. RESULTS AND DISCUSSION

A. Heart Rate Signals

Fig. 5 shows the EMD signals (blue) obtained from the raw
Real(Z) data recorded by the MFIA impedance analyzer in
a single experimental session. Along the EMD signal, PPG
values (purple) are plotted as a ground-truth, for comparison
and validation. Peaks detected by the peak detection algorithm
are marked in the figures with triangles. The axes of all graphs
have the same scales on y-axis, −0.1 to 0.1 on left for EMD
signals, and −500 to 500 on the right for PPG signals.

The duration of each measurement is 20 seconds. Even
though the PPG and EMD signals are taken simultaneously,
the peaks of both signals are not expected to perfectly match
for two main reasons: (1) the PPG data measurement system
has a small delay when obtaining the information through the
Matlab interface due to the delay in the code installed in the
microcontroller; (2) bioimpedance data is obtained above the
left hand wrist (Fig. 3), but the PPG data is obtained from
thumb. The pulse wave is expected to have a noticeable delay
comparing the travel times from the wrist and fingers.
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Fig. 8: SNR based quality estimate of the different electrode types.

The bioimpedance signals measured with the smooth copper
electrodes (Fig. 5b) and the smooth stainless steel electrodes
(Fig. 5f) have the most adequate visual appearance, and also
the highest SNR metrics. The real part of bioimpedance signals
measured with the bumpy copper electrodes (Fig. 5a) is very
chaotic with very low corresponding SNR. Curiously, the
other components of the signal from these electrodes, such
as the Imag(Z) component have much higher visual quality
and SNR. The results obtained with other electrode types are
in between these two extremes in their visual quality and their
corresponding SNR values.

We confirm that the SNR metric matches with human intu-
ition about what makes a good heart rate signal by asking two
volunteers to rank the measured bioimpedance signals by their
perceived visual quality, and comparing this ranking with the
ranking produced by the SNR metric. While the differences in
the ratings between the SNR metric and either of the reviewers
are slightly larger than the rating differences between both



reviewers, the SNR/human rating match is reasonably good.
Fig. 6 shows that our BPM estimation results have a

relatively good match, especially for the higher quality signals,
with the PPG sensor values which we treat as the ground truth
in these experiments. Fig. 7 shows that there is a relation
between the SNR metric and the accuracy of the BPM es-
timation (Pearson’s correlation r = −0.28). In particular, high
SNR measurements show very good match (≤1 difference)
between the BPM estimated via our method and the BPM
obtained from the PPG sensor.

B. Electrode Quality Comparison

In order to compare the different types of electrodes, we
aggregate the SNR results from all six experiments, each
experiment with six types of electrode pairs. Instead of
preselecting to use e.g., Real(Z) signals for each of these
results, we compute EMD on all four bioimpedance signals,
namely Real(Z), Imag(Z), Phase(Z) and Abs(Z) and then use
the best EMD from these, as measured by the SNR on its
autocorrelation. This allows to reduce the impact of external
factors on the results.

Fig. 8 shows the average SNR values and their standard
deviations for each electrode type. A clear picture emerges:

• Bumpy electrodes have better average performance than
smooth electrodes;

• Steel electrodes outperform gold electrodes, which, in
turn, outperform copper electrodes.

It is important to stress that these are preliminary results that
need further confirmation. In particular, the variability between
the experiment days and the experiment subjects (as shown by
the standard deviations in Fig. 8) is larger than the variability
between the different types of electrodes. This is likely to
be the effect of slightly different electrode placements on
the wrist; as known in the research literature, the placement
has a large impact on the results [3]. We did not attempt to
perfectly match the locations of the electrodes between the
measurements, as it is unlikely that real users of such devices
would be able to do that.

Another aspect to note is that for gold electrodes the
performance degraded noticeably over time. For instance, in
the first experiment, gold electrodes showed the best results. In
subsequent experiments, the gold plating on these electrodes
started to degrade, as observed visually, and the result quality
decreased. If proper gold electrodes are used instead the copper
ones with a gold plating, the results may differ.

IV. CONCLUSION

This paper focuses on electrode selection for wrist-worn
bioimpedance measurement applications. To this end, we
create six different pairs of electrodes, and conduct a small
experimental study with two test subjects and three data
recording sessions for each of the subjects. We analyze the
data by estimating the beats per minute (BPM) from empirical
mode decomposition (EMD) of the signals, and quantify the
quality of the data by a signal-to-noise ratio (SNR) metric
computed on the autocorrelation of the EMD. The BPM

estimation results are validated with a photoplethysmography
sensor, and we observe low BPM estimation errors (≤1 BPM)
at a high SNR (≥90 dB), with progressively larger ones at
lower SNR levels. Our preliminary findings suggest that the
stainless steel electrodes are more suitable than the gold
ones, which in turn are better than the copper ones, and that
bumpy surface is better than smooth. However, there is a large
variation in signal quality that is dependent on other factors. In
summary, while the type of the electrode clearly matters, it is
just one of the ingredients necessary to accurately estimating
heart rate from bioimpedance signals. In the future work, we
will extend the comparison to also include tetrapolar setups.
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