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Abstract—The increasing popularity and accessibility of un-
manned aerial vehicles (UAVs) presents both opportunities and
challenges. On the one hand, UAVs has a wide range of civilian,
industrial, and military applications. On the other hand, the
popularity of UAVs can lead to illegal or dangerous usage.
Thus, the development of UAV recognition systems is crucial for
ensuring safety and security. However, collecting and labeling
large amounts of real-world data for training these systems can
be time-consuming and labor-intensive.

In this study, we propose a methodology, which can help to
accelerate the development of new UAV recognition systems. This
work demonstrates the effectiveness of training a neural network
using a combination of real-world and synthetic data that can
achieve similar performance to a network trained on real-world
data only.

Index Terms—Neural networks, Convolutional neural net-
works, Artificial neural networks, Synthetic data, Generative
adversarial networks.

I. INTRODUCTION

The count of illegal and dangerous UAV use cases is grow-
ing together with this technology’s popularity and availability.
And technologies of prevention and countermeasures should
be developed at the same pace.

The most basic of these systems utilize a single detection
approach, such as visual-based, sound-based, radar-based,
thermal-based, or radio frequency radio frequency (RF)-based
detection. [1]–[5] These approaches are intended to identify
UAVs based on their physical characteristics – image, sound,
radar reflections, thermal signatures, or radio frequency sig-
nals, respectively.

More advanced systems additionally detect different drone
patterns in order to recognize the UAVs. This approach allows
for assessing the level of threat. But the main challenge for this
approach is the correct pattern definition, which slows down
the development of these systems.

The modern solution for this problem is artificial neural
network (ANN)-based system that automatically defines drone
patterns by training on the UAV representing dataset. The sig-
nificant problem in the artificial intelligence (AI) and macine
learning (ML) system design is training dataset collection and
its management. Usually, it takes about 80% of the time spent
on system development [6].

Machine learning algorithms require large amounts of struc-
tured data for training and testing. For example, to solve
machine vision problems, ImageNet [7] datasets are used –
in this database are more than 14 million images, divided
into thousands of categories. Using such a high-quality and
sorted dataset allows to achieve a more accurate AI model.
Algorithms using ImageNet make mistakes in identifying an
object in photographs in only 3.75% of cases. In comparison,
humans make mistakes in 5% of cases [8].

But it is impossible to form datasets like ImageNet for each
task. If only because the data in them is marked, checked, and
categorized manually. Also, in some cases, real data may be
closed and inaccessible to developers due to data protection,
which leads to the privilege of selling and distributing data
from owners and duplicating available information in public
access [9].

Synthetic data can help to solve these difficulties. They are
computer generated but look similar to real ones.

Since this paper is devoted to visual-based detection and
recognition approach, the dataset is represented as an image
collection. So, another issue of the synthetic dataset could be
the lack of realism of the generated data [10].

The application of photorealistic synthetic data in the train-
ing of UAV detection systems is crucial for the development of
accurate and precise UAV recognition systems. The realism of
the synthetic data allows the neural network to learn realistic
patterns and features of UAVs, improving the accuracy of the
model in real-world scenarios. The diversity and realism of
synthetic data also allow the convolutional neural network
(CNN) to adapt to various lighting conditions, weather condi-
tions, and camera angles, making the UAV detection system
more robust.

The rest of this paper is structured as follows:

• Section II describes related work on similar technology;
• Section III describes the experimental setup of synthetic

data influence on the UAV recognition system;
• Section IV describes an experimental results;
• Section V describes a discussion on this work.
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II. RELATED WORKS

Recent studies have investigated the use of synthetic data in
the design of UAV recognition systems, with a growing num-
ber of works addressing the problem due to its relevance. This
section describes several papers on synthetic data application
for UAV recognition systems.

“Dronesense” is the system for the identification, segmen-
tation, and orientation detection of drones via neural networks
[11]. CNN was employed with synthetic data generated using
a generative adversarial network (GAN) and the Unreal Engine
to create photorealistic images. The system was tested using
the DJI MAVIC2 ZOOM and DJI INSPIRE2 drone models.

In [12], the authors proposed a UAV recognition system that
utilizes a mixed dataset, comprising both real-world data and
synthetic data generated by a deep convolutional generative
adversarial network (DCGAN). The system was tested with 14
different drone models. The authors reported that their system
achieved a high level of accuracy in recognizing UAVs from
the images that were generated.

Publication [13] utilized an open-source 3D modeling pro-
gram, Blender, to generate a synthetic dataset for the DJI
Phantom, DJI Mavic, and DJI Inspire drone models. The
dataset consisted of 1000 images rendered with 10 different
backgrounds and textures, and a CNN was employed as a
classification network using the fully synthetic dataset.

These studies demonstrate the potential of synthetic data in
the design of UAV recognition systems, provide different syn-
thetic data collection approaches, and highlight the advantages
of synthetic data in overcoming the difficulties associated with
obtaining large amounts of real-world data.

III. SYSTEM ARCHITECTURE

This research on real-world training data minimization for
AI-based UAV recognition systems contains:

• classification neural network as a recognition system
described in SectionIII-B.

• real-world dataset described in SectionIII-A1.
• synthetic data generator described in SectionIII-A2.

The experiment is conducted in two iterations:

• The initial iteration utilizes only real-world data to estab-
lish reference precision, recall, and f1-score values as a
baseline.

• In the second iteration, a portion of the real-world data
is replaced with synthetic data, with the proportion of
synthetic data increasing by 10%. After that classification
network is retrained with the new dataset, which allows
comparison of both CNNs in case of their efficiency.

The subjects of the experiment are three drones: DJI Phan-
tom 3, DJI Mavic Pro, and Parrot Bebop 2. The results of
the experiment will provide insight into the effectiveness of
using synthetic data in reducing the reliance on real-world
data for UAV recognition systems, and the performance of the
proposed system when applied to different drone models.

A. Training Dataset

This study uses two datasets, that represent real-world data
and partly synthetic data. Datasets themselves represent a
collection of 1000 images for each drone model, distributed
as follows:

• 800 images as learning data;
• 100 images as validation data;
• 100 images as test data.
1) Real-world data: The real-world dataset was obtained

through manual collection from open-access sources, followed
by a manual filtering process. The images in the dataset
exhibit variations in quality, drone-to-camera distance, drone
position, environmental and weather conditions. After filtering,
the dataset consisted of a total of 3000 images.

The primary limitation encountered during the acquisition
of this data was the limited availability of images, resulting in
a disproportionate distribution between high-quality and low-
quality images. Images were captured in diverse environments,
and they were taken at various angles and distances from the
drone. This subsequently led to a non-uniformity in the dataset,
affecting the performance of the recognition system.

2) Synthetic data: To create synthetic data the Stable dif-
fusion neural network [14] was used, which, unlike the GAN
[15], [16], allows to generate the necessary objects in various
complex conditions, using text prompts or other images as
reference. Stable Diffusion like other diffusion models [17]
consists of 3 main parts: the variational autoencoder (VAE)
[18], U-Net [19], and may contain an optional CLIP ViT-
L/14 text encoder to condition the model on text prompts.
The VAE encoder compresses the image from pixel space
to a smaller dimensional latent space, capturing and learning
a data distribution p(x) main features and semantics of the
image [14]. Gaussian noise is applied to the compressed
latent representation during forward diffusion. The U-Net
block denoises the output from forward diffusion backwards
to obtain latent representation. At the last stage, VAE decoder
generates the final image by converting the representation into
pixel space (image). If model contains text-to-image transform,
textual encoder translates text prompts to an embedding space.
Stable diffusion was trained on images from the LAION-
5B dataset which contains 5.85 billion CLIP-filtered image-
text pairs, of which 2.32 billion contain English language.
Considering those values, the neural network has an idea of
what the object is called and looks like, allowing to create
images according to a certain pattern:

1) photo or a painting;
2) subject of the photo - person, animal, object, or land-

scape;
3) extensions - lighting, color scheme, background, and

other details;
4) specific art style or photo style.
For a new image generation, it was not enough to describe

or give an image of a drone, because when specifying each
object, a different, but similar object appears. Generating
images of precisely the same drone was necessary to solve



this problem. To do this, the Stable diffusion extension,
called “Dreambooth” [20], is used. This method takes a
few images of a subject (in our case drone model) and the
corresponding class name (e.g. “Mavic”) as input, and returns
a fine-tuned/“personalized” text-to-image model that encodes a
unique identifier that refers to the subject. Then, at inference,
the unique identifier in different sentences to synthesize the
subjects in different contexts can be implanted.

To train models for generating drones, datasets were pre-
pared as follows: 15 images of each drone model in different
angles and zoom, 512×512 pixels in size. This image size
is also close to the one we will use for classification, which
will allow us not to degrade the quality of the images. Stable
diffusion training settings were as follows:

• ddim optimizer;
• 150 sample steps per image;
• text encoder training 50% of all training steps;
• Instance token is a drone model (Phantom 3, Mavic,

Bebop) and class prompt UAV.

After training, the main parameter for creating synthetic
images was writing text prompts to generate a drone in the
needed conditions. Some examples of generated images and
their comparison with real drone images can be seen in Table
I.

The prompts can be divided into 2 groups: positive and
negative prompts. Positive prompts define features that are de-
sired to be present in the generated image. Negative prompts,
on the other hand, define features to be excluded from the
generated image. In this research, to generate drone pictures
with different surroundings, the prompts have to be descriptive
enough. But there is a problem that not all prompts from the
description are taken into account in the generation process.
This issue could lead to the generation of undesirable features
that could potentially result in unsuccessfully generated image.
Furthermore, some prompts are not understandable for the
neural network, and, because of that, it will not apply these
”unknown” prompts for image generation. For example, such
prompts as ”distant” or ”far away” were either ignored during
the generation process or generated drones were severely
deformed. Some unsuccessful drone generation results, as well
as attempts to generate a picture of a distant drone, are shown
in Fig. 1. To overcome the disregarding of specific prompts, the
weighting of the prompts has to be performed. The weighting
is done to increase the likelihood of the application of specific
features for the generated image. This can be done by using
brackets. The more brackets are applied to the specific prompt,
the higher prompt’s priority during the generation process.
This method of weighting is intuitive but it is not suitable for
fine weighting of prompts. An alternative approach is to use
numbers in prompts weighting. This provides the opportunity
to fine-tune prompts priority. Besides prompts, there are some
setups that affect the image generation result. The sampling
method field defines the algorithm that will be applied during
image generation. Output image dimensions are determined
by width and height settings. The number of generated images

TABLE I. COMPARISON OF REAL DRONE PICTURES 
WITH GENERATED IMAGES

Real pictures of drones Generated pictures of drones

can be controlled by setting the batch size and batch count.
Adjusting the classifier-free guidance (CFG) scale, in its turn,
changes the fidelity between the prompt and output images.

After prompts writing, prompts weighting, and Dreambooth
optimal setup, all three drone models (DJI Mavic, Parrot
Bebob 2, and DJI Phantom 3) were generated in different
surroundings, especially cities, deserts, and island-type sur-
roundings, as well as in some weather conditions when it
could be difficult to capture flying drone, for example, rain
and snow. All Dreambooth settings for drone image generation
are summarized in Table II.

TABLE II. DREAMBOOTH SETTINGS

Dreambooth setting Value or applied method
Sampling method Euler a

Sampling steps 80-100
Width 512
Height 512

CFG scale 8-10

Examples of drone generation prompts and their results are
shown in Table III.



(a) Unsuccessful Bebop prompts weighting result

(b) Attempt to generate a picture of a distant Bebop

(c) Attempt to generate a picture of a distant Mavic 

B. Classification Network

In this section, we will look at the process of training and
testing a neural network for recognizing drone models. The
performance and accuracy of the model for CNN training
cases 1) on real data only, described in Section III-A1, and
2) with the addition of synthetic data, presented in Section
ere compared. Since the main objective of this research was
to classify the drone in real life, only real photos were used
for testing. All datasets contained 1000 images of each drone
model. The images were split into 3 groups: 80% training,
10% validation, and 10% testing.

The neural network was implemented using the Tensorflow
and Keras libraries in the Python programming language. The
training and testing process was performed on a high per-
formance computer (HPC) with a Nvidia A100 graphic card.
As CNN we choose EfficientNet-B5 checkpoint for transfer-
learning [21], [22], which is pre-trained on the ImageNet [7]
dataset. EfficientNets are a family of image classification mod-
els, which achieve state-of-the-art accuracy, yet being an order-
of-magnitude smaller and faster than previous models [23]. Of
course, at the moment of writing this article, improved versions
of this neural network [24] exists. However, mentioned version
with default settings is also capable of classifying with transfer
learning state-of-the-art accuracy on transfer learning datasets
till 98.8% [23], what is enough for our task. This model is
designed to process images with sizes up to 456×456 pixels,
which is quite enough for classifying our synthetic data with

TABLE III. EXAMPLES OF DRONE GENERATION 
PROMPTS

Positive prompts: A photo of fly-
ing quadrocopter bebop : 7, city at
the background : 3, buildings : 2,
top of buildings : 1

Negative prompts: POV : 7, bad
geometry: 2, close-up : 1, bad pro-
portions: 3, distorted perspective :
4

Positive prompts: A photo of fly-
ing quadrocopter bebop : 7, dunes
at the background : 4, desert: 1

Negative prompts: POV : 7, bad
geometry: 2, close-up : 1, bad pro-
portions: 3, distorted perspective :
4

Positive prompts: A photo of fly-
ing quadrocopter bebop : 5, is-
land at the background : 4, dream
archipelago: 2

Negative prompts: 7, bad geom-
etry: 2, close-up : 1, bad propor-
tions: 3, distorted perspective : 4

a size of 512×512 without much quality loss. All used CNN
hyperparameters are shown in Table IV.

TABLE IV. CNN HYPERPARAMETERS

Neural network hyperparameters

Batch size 16

Epoch 30

Learning rate min=0.00001,
max=0.00005

Dropout 0.4

Optimization Adam

Training process results are shown on the image 2, where
we can see how the Accuracy and Loss function depends
on epoch. Evaluating the resulting graphs, we can see that
the results of the training and validation accuracy after the
20th epoch do not change much, and the graph has reached
a plateau. On the loss plot, the results hardly change after
17 epochs. After evaluating this information and in order to
avoid over-fitting, it was decided to stop at the 15th epoch.
The results of the model trained for 15 epochs are shown in

Fig. 1. Unsuccessful drone generation results.



(a) Dependence of the loss
values on the epoch

(b) Dependence of the accu-
racy values on the epoch

Fig. 2. First CNN results training 30 epoch.

the TableV.
In the second experiment, the same CNN, where 10% files

in the training data set were replaced with images generated by
the Stable diffusion neural network, were trained. Taking into
account the peculiarities of generating images from Section
III-A2, only close-range drone photos were replaced with
close-range synthetic images. The second CNN training his-
tory is shown in Fig. 3, at the 15th epoch the losses increased
and the accuracy decreased, but finally the graph flattens out.
The 15th epoch has been selected for the test with both neural
networks. The results of the second model trained for 15
epochs are shown in the Table VI.

(a) Dependence of the loss
values on the epoch

(b) Dependence of the accu-
racy values on the epoch

Fig. 3. Second CNN results training 30 epoch.

IV. RESULTS

To assess the performance of the classification, the con-
fusion matrix [25], where are calculated such parameters as
accuracy, precision, recall, and f1-score on a per-class basis,
was employed. The metrics are calculated using true and false
positives, true and false negatives. Positive and negative in this
case are generic names for the predicted classes. Confusion
matrix results are interpreted in the classification report, shown
in Table V. Total accuracy of the first model is 95.33%.
The classification report of testing the second neural network,
which contains the synthetic images, is in Table VI. This
model’s total accuracy is 96.0%

Comparing the accuracy results of both neural networks,
we can see that the neural network which was trained on a
mixed dataset works better for 0.67%. This small difference

TABLE V. CLASSIFICATION REPORT FOR 15 
EPOCH WITH REAL DATA

precision recall f1-score support
Mavic 0.95 0.98 0.97 100
Bebop 0.99 0.90 0.94 100
Phantom 0.92 0.98 0.95 100

accuracy 0.95 300
macro avg 0.95 0.95 0.95 300
weighted avg 0.95 0.95 0.95 300

TABLE VI. CLASSIFICATION REPORT FOR 15 EPOCH 
WITH SYNTHETIC DATA

precision recall f1-score support
Mavic 0.92 0.97 0.95 100
Bebop 0.99 0.96 0.97 100
Phantom 0.97 0.95 0.96 100

accuracy 0.96 300
macro avg 0.96 0.96 0.96 300
weighted avg 0.96 0.96 0.96 300

may be due to the fact that on the synthetic images drones
are in very different situations and we can think of it as data
augmentation [26], [27] - we have diversified the dataset. The
most common drone photos in the real dataset are bottom-up
photos of the drone when it flies in the sky. Of course, there
were other photos taken from other angles and different places,
but on synthetic images we generated very rare situations. For
example, a drone in the desert from a Table III.

V. DISCUSSSION

This study aimed to investigate the potential of synthetic
data in the design of UAV recognition systems. Our results
showed that by replacing a portion of the real drone images
with synthetic ones in the training dataset, comparable accu-
racy in the performance of the CNN, which has been trained
with real-world data only, can be obtained.

One issue that arose during the study was the imperfection
of the real-world dataset. The data was collected from open-
access sources and was not perfectly matched in terms of
parameters such as high/low-quality images count proportion.
This imbalance in the quantity of high and low-resolution
images for each UAV model can potentially affect the perfor-
mance of the CNN in recognizing and classifying the different
drone models [28].

Also, it should be noted that this study used the default
version of Stable diffusion and Dreambooth extension without
any extra VAE [29], which could lead to some limitations
on photo-realism. For example, Dreambooth drones generation
distance is limited by the proximity of the ”camera”. This
can result in drone geometry imperfections and deformations
that could lead to unsuccessful distant drone generation. That
was one of the reasons that limited dataset diversity and size.
However, this limitation can potentially be mitigated through
the secondary generation of background images that artificially
distance the UAVs.

However, this is an ongoing research area and future studies
will focus on improving the photo-realism of synthetic images



of the UAVs and increasing the proportion of the synthetic data
in the training dataset. And, despite all of these limitations,
the results of this study demonstrate the potential of synthetic
data in overcoming the difficulties associated with obtaining
large amounts of real-world data. The use of synthetic data
allows the generation of large and diverse datasets with a
high level of control over the parameters and scenarios. That
could potentially accelerate the development of new UAV
recognition systems.
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