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Abstract—This paper examines the possibility of using low-cost
commercial off-the-shelf audio recording equipment in combina-
tion with machine learning techniques to discover the presence of
hostile UAVs. A convolutional neural network (CNN) was trained
to detect and localize two types of quadrotor drones using ground
truth position data collected with motion capture equipment.
System performance was evaluated on pre-recorded validation
data sets and in real-time operation. In both cases, drones can
be successfully detected and localized within the constrained
working volumes studied, achieving angular accuracies in the
8-13◦ range. However, further work remains to be done before
system feasibility in outdoor conditions can be established.

Index Terms—CNN, UAV, drone, motion capture, microphone
array

I. INTRODUCTION

Unmanned Aerial Vehicles, although seeing combat use
as far back as the Second World War [1], have become
ubiquitous in the preceding decade, largely thanks to advances
in battery and computer technology — enabling the production
of low-cost, consumer-grade aircraft controllable from great
distances and streaming a high-definition real-time video feed
to the operator. Unsurprisingly, military applications of this
equipment have been quickly realized as evidenced by the
use of commercial off-the-shelf (COTS) quad-rotor drones as
artillery spotters, vehicles for explosive payload delivery, and
”suicide” guided munitions [2].

Due to their small size and polymer construction, drones
may prove difficult to detect for many types of radar [3]. How-
ever, their use of propellers or rotors for propulsion typically
makes them noisy and therefore opens up the possibility of
acoustic detection and localization. A considerable amount of
prior work has been done in aircraft azimuth, position, and ve-
locity estimation using analytic signal processing techniques,
hand-crafted filter features, and classical machine-learning
algorithms — divided into so-called narrow-band methods [4]
which rely on spectral features such as Doppler shift (more
useful in velocity estimation), and broadband ones [5], [6]
primarily reliant upon signal propagation delay.

Additionally, more recent work has also been done using
deep learning to reduce the problem of drone detection to
what amounts to a classification task [7]–[9]. Attempts have
also been made to use multiple microphone nodes arrayed

over a larger area in order to localize drones and estimate
their trajectories [10].

One must also note the existence of a variety of proprietary
commercial solutions. Some offer detection [11], [12] with
a single microphone, whereas others perform localization
[13] with multiple microphone arrays — each estimating the
target azimuth and their results being combined to produce
position estimates. While prior work has been done with drone
localization utilizing motion capture as the positional label
source [14], this was done using a much larger number of
microphones and support vector machines as regression model
templates.

In this paper, we establish that an approach utilizing purely
learned features is sufficient not only for detection but also
localization of drones. Furthermore, we achieve this with few,
inexpensive, and readily available sensors, without custom
signal processing hardware. Finally, we show that all of this
can be done with a neural network simple enough to be trained
on a personal computer, without requiring extensive compute
resources or large pre-trained models. Our proposed approach,
therefore, involves the development of three fundamental sub-
systems:

• a microphone array — the physical sensor set-up and
software interface for extracting data;

• a source of ground-truth position data — some means to
generate training data labels;

• a machine learning pipeline — the model architecture,
training approach and evaluation metrics.

II. SYSTEM OVERVIEW

We propose using a compact and quickly collected relative
position-audio sample pair data set to directly train a paramet-
ric model with regression heads for direction and magnitude,
as well as a classification head for detection. Inspired by prior
work on deep learning methods for sound source localization
[15], [16], a convolutional neural network (albeit without
residual connections and utilizing only spectral input features)
was selected to serve as the regression model. A 2d-to-1d
downsampling approach is used on time-frequency inputs to
exploit both broadband and narrowband features in the data.
An indoor motion-capture system generates the positional data
for rapid prototyping and development purposes. The design



Fig. 1. CNN architecture given a quarter-second sample window at 44.1kHz
sample rate and spectrogram view width of V.

of the microphone array was deliberately kept simple — with
3 microphones, each within a 3D-printed directional housing
and connected to the host device performing inference through
a USB sound card, arrayed in a circular planar arrangement.

A. Model Architecture

The model architecture is deliberately minimalist. Its signa-
ture can be formally expressed as

fθ (X1, ...,XV ) = (r̂, ∥r∥, c) (1)

X = DFT (x(t1), ..., x(tN )) (2)

where r is the true position vector with respect to the
center of the microphone array, hence r̂ and ∥r∥ are its
direction and magnitude components respectively; c is a binary
classifier output. The V input vectors (X1, ...,XV ) (”slices”),
constitute a real-valued spectrogram. V itself is referred to as
spectrogram view width or simply view width.

Each slice is computed as the Discrete Fourier Transform
(DFT) of N amplitude observations (x(t1), ..., x(tN )) taken
at a sampling frequency fsample over a sampling period T .
All inputs have real values, so only positive frequency values
Xi≤N

2
of the transform need to be considered. The V slices

that together form the input of the model are themselves
collected at a frequency of fslice = 180Hz, which is not
related to the audio sampling frequency fsample = 44.1kHz.

For inference, the absolute value of the transform is used.
These were normalized by log10

(
|Xi|2

)
and had the dominant

lowest frequency components truncated to improve model
performance. Each spectrogram slice X for each channel is
furthermore individually standardized, to eliminate total loud-
ness differences between channels. The model is parametrized
by view width V and sample period length T . The latter was
fixed at 0.25s for all experiments, resulting in the input data
shape illustrated in figure 1 when combined with the constant
sampling frequency of 44.1kHz.

The downsampling convolutional part of the network is
a single 2-dimensional layer followed by a sequence of 1-

dimensional ones. All convolutional layers use a ReLU activa-
tion. Prediction heads have a single hidden layer with a ReLU
activation. The direction output r̂ and magnitude output ∥r∥
have no activation, whereas the classifier value c has a sigmoid
nonlinearity applied to it.

The model was implemented using PyTorch, and the training
loss could be expressed as

(Lcos(r̂, r̂true) + Lmag(∥r∥, ∥r∥true)) ∗ ctrue+

+Lcls (c, ctrue) (3)

with Lcos,Lmag being Huber losses for the direction (cosine)
and magnitude outputs respectively, and Lcls being the cross
entropy classification loss. Regression losses are masked by
the label class ctrue (0 when no drone is present in the sample)

B. Audio Data Collection

A 3-element planar microphone array was implemented,
leaving room for an additional fourth input in case this
proved to be necessary for direction finding outside of the
horizontal plane. A directional housing was 3d printed for each
microphone, attached to a central fixture using variable-length
spans of 30mm modular aluminum profile. An audio playback
system was added to the data-gathering set-up to allow for
the augmentation of training data with various noise types.
It was found that including in particular sharply punctuated,
wide-band noise sources (e.g., clapping) practically eliminated
observed model tracking of noise in real-time inference.

When collecting training or test data, sound recordings are
made in chunks and stored alongside position time-series data.
The Fourier conversion, stacking, and normalization steps are
handled when loading this data into memory. The end use
case, however, involves working with real-time audio streams.
For this purpose, a queue of sample chunks is maintained, on
which a sequence of DFTs is periodically computed to produce
spectrograms of the desired width.

C. Relative Position Data Collection

Training labels — ground truth positions of the drone
w.r.t. the microphone array — were collected indoors, using
OptiTrack motion capture equipment and Motive software,
within a 6 × 6 × 3 work area, as in [17]. Two consumer-
grade drones were used — a Syma X5HW and DJI Phantom.
Sound recordings were made in short chunks synchronized
with sequences of drone positions at fslice, and linear interpo-
lation was employed to produce an evenly spaced time series.
Samples are only appended to the data set at intervals where
a sufficient change in the drone’s position has been observed
to reject any made when the drone is landed or otherwise
immobilized.

III. RESULTS

A. Experimental Setup

A training data set consisting of approximately 26 minutes
of recordings with each drone was collected. Classifier perfor-
mance was improved by making sure to structure recordings



symmetrically — including a similar amount of data collected
under the same ambient conditions (noise type) both with and
without the drone. Validation data sets used for debugging
and controlling the training process were created in separate
recording sessions and stored separately. These are 4 × 180
samples long for each type of drone, with/without the drone
present and with/without additional noise. To aid in evalu-
ating and debugging model performance, visualization tools
focusing primarily on a top-down view of the working volume
were developed, both for use with a prerecorded data set and
running inference in real time.

B. Evaluation Metrics and Quantitative Results

5 metrics were computed to evaluate model performance on
validation data sets.

ϵθ = deg
(
arccos (r̂− r̂true)

)
(4)

ϵ∥r∥ = (|∥r∥ − ∥r∥true|) (5)

ϵr = (|∥r∥ · r̂− rtrue|) (6)

ϵ∥r∥% =

(
|∥r∥ − ∥r∥true|

∥r∥true

)
∗ 100 (7)

ϵr% =

(
∥r− rtrue∥
∥r∥true

)
∗ 100 (8)

being mean angular error, absolute magnitude error, absolute
positional error, relative magnitude and relative positional error
respectively.

Table I shows best-attained in each metric for models trained
(and evaluated) on data containing each type of drone as well
as both at once, the latter illustrating a clear capability to
learn multi-modal distributions. Table II shows the degradation
experienced when exposed to a type of drone not seen in the
training data. Notably, the Syma drone is significantly quieter,
leading models trained only on it to underestimate distances
when faced with its louder counterpart and vice versa.

IV. CONCLUSIONS

Our work successfully demonstrates that a CNN simple
enough to be trained on a personal computer, alongside a spar-
tan sound recording setup can be used to successfully detect
and localize quadrotor drones with an angular error in the 10-
degree range, using approximately 52 minutes of synchronized
audio-position data from a motion capture system. However,
more work remains to be done to verify if this approach is
feasible in more noisy outdoor conditions, and models show
weaknesses when exposed to unfamiliar target types.

TABLE I
HIGHEST PERFORMANCE BY DRONE USED

Drone Evaluation metric
type ϵθ ϵ∥r∥ ϵr ϵ∥r∥% ϵr%
DJI 8.51◦ 0.18m 0.43m 8.29% 19.19%

Syma 12.86◦ 0.22m 0.60m 11.43% 28.17%
Both 10.06◦ 0.22m 0.49m 10.59% 22.94%

TABLE II
HIGHEST GENERALIZATION PERFORMANCE

Drone Evaluation metric
type ϵθ ϵ∥r∥% ϵr̂% cls%

DJI → Syma 25.70◦ 34.52% 63.07% 99.77%
Syma → DJI 27.24◦ 30.84% 63.70% 95.49%
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