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Abstract. Recurrent neural networks have flourished in many areas.
Consequently, we can see new RNN cells being developed continuously,
usually by creating or using gates in a new, original way. But what if
we told you that gates in RNNs are redundant? In this paper, we pro-
pose a new recurrent cell called Residual Recurrent Unit (RRU) which
beats traditional cells and does not employ a single gate. It is based on
the residual shortcut connection together with linear transformations,
ReLU, and normalization. To evaluate our cell’s effectiveness, we com-
pare its performance against the widely-used GRU and LSTM cells and
the recently proposed Mogrifier LSTM on several tasks including, poly-
phonic music modeling, language modeling, and sentiment analysis. Our
experiments show that RRU outperforms the traditional gated units on
most of these tasks. Also, it has better robustness to parameter selec-
tion, allowing immediate application in new tasks without much tuning.
We have implemented the RRU in TensorFlow, and the code is made
available on GitHub.

Keywords: Recurrent neural networks · Residual neural networks ·
Gates · Robustness · Deep learning.

1 Introduction

Recurrent neural networks (RNN) have achieved widespread use in sequence pro-
cessing tasks such as language modeling, speech and music recognition. RNNs are
composed of a single computation cell, called Recurrent Unit which is unrolled
along the sequence dimension.

⋆ We would like to thank Faculty of Computing, University of Latvia for covering the
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power and Leo Trukšāns for the technical support. This research is funded by the
Latvian Council of Science, project No. lzp-2018/1-0327.
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In order to achieve stable training and the ability to store and make use of
long-term dependencies, the recurrent units are designed in a special way. The
most well-known units are LSTM and GRU, which use gating mechanism to
store and extract information from the recurrent state. Two kinds of gates are
used in these units – reset gates and update gates, where each of them is based
on modulating the state information with the input information and is imple-
mented by multiplying two values, one of which is often range-limited by the
sigmoid function. Gates are considered crucial for propagation of long-term in-
formation [5] and virtually all proposals of Recurrent Units, including numerous
recent developments, contain such multiplicative input-state interactions. Re-
cent developments of improved RNN variants contain even more multiplicative
interactions [12] that culminates in Mogrifier LSTM, where the input informa-
tion is modulated through a series of reset gates [16]. They find that about five
reset gates achieve the best performance yielding Mogrifier LSTM to be the
top-performing RNN cell on several datasets so far.

In contrast, we show that gates are not essential at all to construct a well-
performing recurrent unit. To this end, we develop a recurrent cell not containing
a single gate (see visualization in Figure 1). The proposed cell surpasses not only
GRU and LSTM but also the so far best Mogrifier LSTM on many commonly
used benchmark tasks. Our cell is based on a residual ReLU network employing
normalization and ReZero [1] recurrent state update. If well-performing recurrent
units without gates can be created, perhaps we shouldn’t think of gates every
time we think of recurrent networks and maybe this insight could help us create
strong non-gated networks in the future.

2 Relation to Prior Work

A great number of RNN cells have been developed. They usually use gates to
ensure stable training over many time-steps. The most well-known is LSTM
[8] which has an extra cell state that can pass information directly forward
and three gates (forget, input and output) which control the data flow. This
specific structure has allowed it to become the state-of-the-art cell, still being
used extensively to this day. Its success is considered to stem from the 3 gates
at its core, and since then, it has been considered that RNN cells need gates for
optimal performance.

Following the success of the LSTM, a new cell called GRU [4] was proposed,
which is loosely based on LSTM and often referred to as the light version of the
LSTM. This cell combines the forget and input gates of an LSTM, resulting in
2 gates total – reset gate and update gate. As a lighter cell, it can be computed
faster while the results are often similar.

Based on the marvellous results of LSTM and GRU, many extensions and
modifications have been proposed. Phased LSTM [17] introduce a new time
gate. Gating also in the depthwise direction is explored in [10,24]. The power of
multiplicative interactions, which is the central operation in gates, is explored
in [12,23]. The number of gates is brought to the culmination in Mogrifier LSTM,
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Fig. 1. The structure of the Residual Recurrent Unit (RRU) with two state-input linear
transformations. The dotted brackets cover the layer which can be used zero or more
times, in this case – once.

which does input and hidden state modulation by multiple rounds of reset gates
[16]. Their results suggest that using about five rounds of reset gates gives the
optimal performance and positions Mogrifier LSTM as the currently best RNN
cell in WikiText-2, Penn Treebank word-level and Penn Treebank character-level
tasks.

Several works have questioned the necessity of the high number of gates in
RNNs. [5], through numerous experiments, find that the forget gate and the
output activation function are the most critical components of the LSTM block
and removing any of them impairs performance significantly. A similar conclusion
was obtained in [22] and a new cell called JANET was proposed, which is based
on the LSTM but uses just the forget gate. The minimalistic designs of recurrent
cells with only one forget gate were proposed in [7, 26]. The need for a reset
gate in GRU was questioned in [18], where they obtain improved accuracy in
Automatic Speech Recognition with the unit having only an update gate, Batch
Normalization and ReLU activation.

There has been some tinkering done with using a residual shortcut connec-
tion in RNNs. Consequently, a Residual RNN [25] has been proposed. Res-RNN
and gRes-RNN were proposed, where the former is a purely residual recurrent
network and the latter combines residual shortcut connection with a gate. Their
units show improved speed but are not able to unequivocally beat LSTM in
terms of accuracy. [11] proposes a Residual LSTM, which is a mix between a
regular LSTM and a residual shortcut connection to improve performance in
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case of many layers. Even with the addition of the residual shortcut connection,
it still contains a high number of gates.

3 Residual Recurrent Unit

We propose a new cell that does not contain a single gate but provides a compet-
itive performance. We call this cell the Residual Recurrent Unit, RRU for short.
The cell consists of a residual shortcut connection and several linear transforma-
tions employing Normalization and ReZero [1] recurrent state update. ReZero is
a simple zero-initialized parameter that controls how much of the residual branch
contributes to the updated state. ReZero helps us make the unit structure gate-
less, which makes it more simple. As it is initialized as 0, only the previous
state is taken in effect at the first training steps, and the optimal weight for
the residual branch emerges during training. ReZero ResNet has been shown to
have non-vanishing gradient yielding stable training for very deep convolutional
networks and Transformers [1] and achieving great results. Here we adapt it to
replace gates in recurrent networks to see what benefits it could give to recurrent
units.

The visualization of our cell can be seen in Figure 1. RRU takes input xt at
the current time-step t which is a vector of dimension m and the previous state
ht−1 of dimension n and produces the updated state ht and the output ot of
dimension p. The calculations done in the RRU, are described as:

jt = ReLU(Normalize(W xxt +Whht−1 + bj)) (1)

[jt = ReLU(W kjt + bk)]∗ (2)

dt = Dropout(jt) (3)

ct = W cdt + bc (4)

ht = σ(S)⊙ ht−1 + Z ⊙ ct (5)

ot = W odt + bo (6)

In the above equations, upper case letters depict the learnable parameters.
Weight matrices with their respective dimensions are: W x ∈ Rm×g; Wh ∈ Rn×g;
W k ∈ Rg×g;W o ∈ Rg×p;W c ∈ Rg×n, where g is the hidden size which we choose
to be equal to q ∗ (m+n), and q is the middle layer size multiplier (we typically
use values from 0.1 to 8.0). Bias vectors and their dimensions are: bj ∈ Rg;
bk ∈ Rg, bo ∈ Rp; bc ∈ Rn. There are two learnable scaling factors S and Z of
dimension n. The sigmoid function is denoted as σ, [·]∗ denotes the use of the
equation inside the brackets zero or more times, ⊙ denotes scalar multiplication.

The structure of RRU is similar to the ReZero residual network [1]. At first,
the previous hidden state ht−1 and the input of the current timestep xt are
passed through a linear transformation followed by L2 normalization and ReLU.
Then, zero or more linear transformations follow employing ReLU activation.
To make the formulas clearer, Equation 2 has two vectors named jt, in reality,
each layer has their own W k and Bk. This value is a hyperparameter, for which
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each dataset has a specific value which works best, usually 1 or 2. Dropout [20]
follows, and the result is linearly transformed to get two values – the output of
the current timestep ot and the hidden state candidate ct. The next hidden state
ht is produced by a weighted sum of the previous state and the candidate. The
candidate is scaled by a zero-initialized parameter Z according to the ReZero
principle. There is a slight difference from the ReZero paper in that we use a
separate scale for each feature map, but ReZero uses a common scaling factor
for all maps, see Section 6 for evidence that our version works better.

Another difference from the traditional ResNet architecture is that we have
introduced a scaling factor S for the residual connection (ResNet has a fixed
S = 1). Such change is motivated by the need for the recurrent network to forget
some of the information from the previous time-steps. The scale S is limited to
the range 0− 1 by the sigmoid function to eliminate unstable behaviour in some
cases, especially if S has become negative. Since S < 1, the cell’s memories
gradually fade out. Note that is a learnable parameter (for each feature map
separately) so the network can choose the rate of forgetting. Such fade-out is
not so flexible as a forget gate employed in other cells but the network can
compensate for it using the residual branch c. We have observed that the value
of S actually changes during training, mainly decreasing for most of the feature
maps. This can be explained that the network initially uses residual connection
to provide a stable gradient for training but later learns to rely on the c value
more which provides greater control. The value of S is initialized in the way
that after the sigmoid, it is uniformly distributed in the range 0 − 1. This idea
is suggested by [6] and relieves us from the need for another hyperparameter
that needs to be tuned. We also experimented with a constant initialization of
S; that worked similarly but required an adequate constant, usually in the range
0.4 − 0.95 depending on the dataset (see Section 6). The ablation study also
shows that S is important in general; for Penn Treebank removing the scaling
produces a significantly worse result.

The initial hidden state h0 is prepared to have all zeros except the first feature
map, which is set to 1

4

√
n. Initializing with all zeroes causes a blowup due to

the employed normalization in the case when zeros are given also as the input
values xt in the first timesteps. Such inputs may occur if the input is padded by
zeros from some shorter sequence.

Note that although Equation 5 resembles the update gate of LSTM, it is not
because in the update gate, both of the multiplied values depend on the input
or hidden state but in our case, S and Z are learnable parameters – effectively
constants after training.

4 Experiments

To test our unit’s performance against the chosen competitors (GRU, LSTM,
Mogrifier LSTM), we run experiments on language modeling, music modeling,
sentiment analysis, and MNIST image classification tasks. These tasks are com-
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monly used for evaluating recurrent networks. All chosen units are equivalent in
terms of trainable parameters in our experiments, to ensure a fair comparison.

For the polyphonic music modeling, the task is to predict the next note when
knowing the previous ones. The model’s performance is measured by negative
log-likelihood (NLL) loss which sums the negative logarithm of all the correct
prediction probabilities. For this task, we chose four datasets that are usually
evaluated together – JSB Chorales, Nottingham, MuseData, Piano-midi.de [3].
They are already split into training, validation and testing portions. For word-
level language modeling, we use the Penn Treebank dataset [15]. The aim of this
dataset is to predict the next word by knowing the previous ones. The network’s
performance is measured in perplexity, which is the probability that a word
will show up as the next word from the previous context. For character-level
language modeling datasets we chose enwik8 [9], text84 and Penn Treebank [15].
The aim is to predict the next character from the previous ones. The performance
is measured in BPC (bits per character), which is the number of bits used to
represent a single character from the text. Although word-level and character-
level tasks may seem similar, they evaluate different aspects of the cell. The
word-level task has a large vocabulary, so the emphasis is put on evaluating
RRU’s ability to deal with diverse inputs, but the character-level task has a
large window size requiring the cell to remember and process long history.

The goal for IMDB sentiment analysis dataset [14] is to predict the sentiment
of the text as either positive or negative. This dataset is of interest because it
is quite different from the previous ones. The performance of the network is
measured as the accuracy of the predictions. The challenging part of the dataset
is to learn the hidden state in a way that can understand even complicated
structures, for example, double negatives, etc.

A frequently used dataset for evaluating recurrent networks is MNIST image
classification. RNNs are not well suited for image classification; therefore, it puts
every aspect of the network at stress. The aim here is to predict the number that
each picture represents by processing a sequence that consists of all the pixels
in the picture.

For music modeling and word-level language modeling, we run hyperparam-
eter optimization on each cell, using Bayesian hyperparameter tuning from the
HyperOpt library [2]. The optimized hyperparameters include: number of learn-
able parameters, dropout rate, learning rate and some of the most influential
hyperparameters specific to each cell; for more detailed configurations see Ap-
pendix D. The RRU cell has a built-in dropout, so to get an equitable envi-
ronment, we added recurrent dropout to GRU, LSTM and Mogrifier LSTM as
described in [19]. For character-level Penn Treebank, we also run optimization,
but we only grid search through the different dropout rates from 0.0 to 0.9 –
and the best testing result from these runs is shown in the results table. This
experiment is further described in Appendix A. For the rest of the datasets, hy-
perparameter tuning would require computational power exceeding our budget,
so we only run a singular experiment on each cell on as fair a configuration as

4 http://mattmahoney.net/dc/textdata
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Table 1. Evaluation results on each task. The ”+/-” notation means that we did grid
search through ten different dropout values to find the one which performs the best.
Every metric over the horizontal line is better if it is lower and every metric under it
is better if it is higher.

Task Tuned RRU GRU LSTM
Mogrifier
LSTM

Music JSB Chorales (NLL) + 7.72 8.20 8.33 8.18
Music Nottingham (NLL) + 2.92 3.22 3.25 3.28
Music MuseData (NLL) + 7.03 7.31 7.24 7.22
Music Piano-midi.de (NLL) + 7.38 7.58 7.54 7.52
Word-level Penn Treebank (Perplexity) + 102.56 122.21 140.35 126.88
Character-level Penn Treebank (BPC) +/- 1.27 1.28 1.34 1.29
Character-level enwik8 (BPC) - 1.37 1.53 1.49 1.36
Character-level text8 (BPC) - 1.35 1.55 1.44 1.37

Sentiment analysis IMDB (Accuracy) - 87.20 87.04 85.89 86.23
Sequential MNIST (Accuracy) - 98.74 98.36 92.88 98.14
Permuted MNIST (Accuracy) - 97.67 98.68 97.39 97.81

possible, that is, we try to use the same configuration but sometimes changes to
the configuration have to be made, for more details see Appendix D.

Each experiment was done on a single machine with 16 GB RAM and a
single NVIDIA T4 GPU, time spent during a single, full training varies from
averagely 4 minutes (JSB Chorales) to averagely 115 hours (enwik8). We use
RAdam optimizer [13] with gradient clipping. We train each dataset until the
validation loss stops decreasing for 3-11 epochs, depending on the dataset.

Results of all of these experiments can be seen in Table 1. RRU is a definite
leader giving the best performance on almost all of the datasets. Notably, RRU
scores on top for all fully hyperparameter-optimized cases. In the two cases
where RRU is outperformed, it still comes close, and it is probable that RRU
would achieve the best performance if full hyperparameter optimization were
performed for these datasets. We suspect that the RRU could reach a state-of-
the-art performance score on specific datasets, but we didn’t have the time and
resources to spend on tuning to achieve this. Convergence graphs of some of
these experiments can be seen in Appendix C, in which RRU usually converges
first and with better results.

5 Robustness against Hyperparameter Choice

One of the main reasons for LSTM’s and GRU’s wide usage is their robustness
against hyperparameter choice; that is, usually, you can use them with some
default parameters, and they will give decent results. Such property has been
described in several works, one being [21]. We will test the robustness for each
cell to the selection of learning rate and learnable parameter count – the two
most important hyperparameters. We run a grid search on Nottingham music
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modeling dataset with a reasonably wide hyperparameter range for all the cells.
We plot the validation NLL and the number of epochs needed to reach the best
accuracy as heatmaps in Figure 2. The figure shows that our cell has a much
broader range of parameters in which it works well, which also means that our
cell can be used successfully without much parameter tuning. Further robustness
experiments can be seen in Appendix B.

Fig. 2. Robustness against learning rate and parameter count on the Nottingham
dataset. The top row gives the testing NLL, and the bottom row shows the number of
epochs needed to reach the best NLL. Good results are depicted with blue colour, poor
results – with yellow. The red squares correspond to runs where the training failed, and
the pink frames show the run with the best NLL. We observe that RRU consistently
produces the best NLL across the entire range and achieves that within a small number
of epochs.

6 Ablation Study

In this section, we investigate the influence of the key elements in our cell by
replacing them with simpler ones to determine whether our cell’s structure is
optimal. We compare the RRU performance against versions with:

– Removed normalization.

– Using a single scalar multiplier Z for all feature maps as proposed in the
ReZero paper [1]. Our cell uses a different multiplier for each map.

– Added ReLU over Equations 4 and 6. Such setup is employed in some ResNet
architectures [29, 30] and could have more expressive power.

– Residual weight S set as a constant with a scalar value 1 i.e. using an unscaled
residual shortcut connection, expressing Equation 5 as ht = ht−1 + Z ⊙ ct.
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– Residual weight S initialization with a scalar value 0.95 instead of a random
one.

For these experiments, we have chosen character-level Penn Treebank, IMDB,
Sequential MNIST datasets, on which we do a single run, and Nottingham, word-
level Penn Treebank, on which we optimize the hyperparameters as described in
Section 4. For each dataset’s configuration see the respective dataset’s configu-
ration for RRU in Section 4, except for character-level Penn Treebank for which
the configuration differs by the dropout rate which isn’t tuned, but set as 0.3.
The results can be seen in Table 2. We conclude that the current structure of
our cell gives the best performance. Interestingly, the considered simplifications
produce only slightly worse results, suggesting that the RRU’s structure is ro-
bust to changes. Although great results can be achieved without normalization,
it seems to give the RRU more stability during the training and contributes to
robustness (see Appendix 5). We notice that our approach of using a different
ReZero multiplier for each hidden map gives better performance than using only
the singular scalar ReZero parameter. Adding another ReLU over the vectors ct
and ot does not help. Passing the full state without a scaling factor S decreases
performance. Using constant initialization seems to give similar performance,
but in these experiments, the random initialization gave us better results with
the added bonus of fewer hyperparameters to tune.

Table 2. Ablation study results for all of the datasets. ”Character-level Penn Tree-
bank” is denoted as ”Character PTB” and ”Word-level Penn Treebank” is denoted as
”Word PTB” to save space.

Character
IMDB

Sequential
Nottingham

Word
Version PTB

(Accuracy)
MNIST

(NLL)
PTB

(BPC) (Accuracy) (Perplexity)

RRU 1.32 87.45 98.74 2.92 102.70
no normalization 1.32 87.21 98.03 2.92 104.60
single scalar ReZero 1.32 87.08 98.45 2.97 104.44
ReLU over c and ot 1.34 87.17 86.38 3.07 120.76
S = 1 2.25 86.78 98.43 3.56 110.74
S initialized with 0.95 1.33 86.71 98.60 2.96 103.09

7 Conclusion

By developing a new RNN cell without any gates and showing that it outperforms
the gated cells on many tasks, we have demonstrated that gates are not necessary
for RNNs. Our proposed RRU cell is robust to parameter selection and can
be used in new tasks without much tuning. RRU has roughly the same speed
as pure TensorFlow implementations of LSTM or GRU, and we look forward
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to low-level optimized CUDA RRU implementation that matches the speed of
optimized LSTM and GRU implementations. We expect that the insights gained
in this work will contribute to further improvements in the designs of recurrent
and residual networks.
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A Appendix – Dropout Analysis

While running experiments, we noticed that our cell seems to handle dropout
better than the other cells. To test this observation, we ran a grid search on
Nottingham and character-level Penn Treebank datasets for each cell through
different dropout rates — from 0.0 to 0.9, for more details of the configurations
used see Appendix D. The results from these experiments can be seen in Figures 3
and 4. From these results, we can see that all cells benefit from dropout, but
for RRU, its impact is much more pronounced, and RRU ultimately reaches
better final results than the other cells. We can also see that the RRU works
best with a dropout rate of around 0.7. Possibly, dropout is better suited for
ReLU networks, as is RRU, rather than for gated networks.

Fig. 3. NLL (lower is better) depending on the dropout rate for each cell on the Not-
tingham dataset.
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Fig. 4. BPC (lower is better) depending on the dropout rate for each cell on the
character-level Penn Treebank dataset.
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B Appendix – Further Robustness Experiments

In Section 5 we tested the robustness of our cell. Here we will do the same
experiment on a different dataset, the word-level Penn Treebank, to furthermore
test the robustness. We plot the validation perplexity and the number of epochs
needed to reach the best accuracy as heatmaps in Figure 5. The figure shows
that our cell has a much broader range of parameters in which it works well,
which also means that our cell can be used successfully without much parameter
tuning. We also notice that the LSTM and the Mogrifier LSTM had trouble
learning anything at all on very small learning rates.

Fig. 5. Robustness against learning rate and parameter count for different cells on the
word-level Penn Treebank dataset. The top row gives the testing perplexity, and the
bottom row shows the number of epochs needed to reach the best perplexity. Good
results are depicted with blue colour, poor results – with yellow. The red squares
correspond to runs where the training failed, and the pink frames show the run with
the best perplexity. We observe that RRU consistently produces the best perplexity
across the entire range and achieves that within a small number of epochs.

In Appendix 6 we looked at different RRU versions from which we concluded
that our version tops the other versions, but we want to show in more detail
why normalization is beneficial in the RRU. We will compare the RRU with
and without normalization with the robustness tests as described in Section 5.
We plot the validation loss and the number of epochs needed to reach the best
accuracy as heatmaps in Figure 6 and 7. We observe that RRU with normaliza-
tion consistently produces the best loss across the entire range and achieves that
within a small number of epochs which shows that normalization helps gain a
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much broader range of parameters in which it works well and helps avoid failed
training sessions.

Fig. 6. Robustness against leaning rate and parameter count for different cells on the
Nottingham dataset. The top row gives the testing NLL, and the bottom row shows
the number of epochs needed to reach the best loss. Color depictions are the same as
in Figure 5.
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Fig. 7. Robustness against leaning rate and parameter count for different cells on the
word-level Penn Treebank dataset. The top row gives the testing perplexity, and the
bottom row shows the number of epochs needed to reach the best loss. Color depictions
are the same as in Figure 5.
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C Appendix – Convergence Speed

Convergence speed is another important factor in neural networks, for that rea-
son, we will display convergence graphs of three datasets in this section, one
for each training mode – JSB Chorales (tuned), character-level Penn Treebank
(half-tuned) and IMDB (not tuned). The graphs are taken from the experiments
done in Section 4.

Convergence graph of the JSB Chorales dataset with the best parameters
found in tuning for each cell can be seen in Figure 8. We can observe that RRU
in this dataset trains much faster, beating every other cell’s best NLL at 17th
epoch, which implies that early stopping could be done.

Fig. 8. Validation NLL on JSB Chorales dataset for each epoch and tuned cell.

Convergence graph of the character-level Penn Treebank dataset after half-
tuning (going through 10 different dropout values and taking the best one) has
been done can be seen in Figure 9. We see that the RRU beats all the other cells
here, while doing it in a similar epoch count as others, even when it has a larger
dropout rate, which usually increases epoch count tremendously.

Convergence graph of the IMDB dataset can be seen in Figure 10. In this
graph we once again see that the RRU is capable of reaching it’s best accuracy
first and beating the other cells with it.
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Fig. 9. Validation BPC on character-level Penn Treebank dataset for each epoch and
half-tuned cell. In this Figure RRU has 0.7 dropout, GRU has 0.5 dropout, LSTM has
0.4 dropout and Mogrifier LSTM has 0.5 dropout.
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Fig. 10. Validation Accuracy on the IMDB dataset for each epoch and cell.
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D Appendix – Experiment Configurations

This appendix is intended for elaboration of the configurations of the experiments
that are written in Section 4, but for specific configurations we suggest contacting
the author(s).

D.1 Dataset Configurations

Polyphonic music modeling datasets contain sequences of played piano-roll ele-
ments (MIDI note numbers between 21 and 108 inclusive), which we represent
as a binary mask for each time-step, where ones are placed in the positions cor-
responding to the MIDI notes played at that time step. We trim or pad the
sequences to length 200, similarly to how it was done by [27].

Word-level Penn Treebank dataset is already split into training, validation
and testing portions. We use a context length of 64 and a vocabulary of 10
thousand, which includes all of the words in the dataset.

Character-level Penn Treebank also is already split into training, validation
and testing portions. However, enwik8 and text8 are not, so we use the standard
split for each of them, which is 90% training, 5% validation, 5% testing. We
use a window size of 512 for Penn Treebank and 256 for enwik8 and text8. The
training is run in a stateful manner, meaning that we pass the old state forward
to the next window (with a 10 % chance of passing a state filled with zeros).

The IMDB dataset consists of 25 thousand training sequences and 25 thou-
sand testing sequences. We take 5 thousand sequences from the end of the train-
ing set as a validation set. We trim the sequences to length 500 and use a vo-
cabulary of size 10 thousand created from the most frequently occurring words
(there are approximately 25 thousand different words in total) to be able to fit
the sequences into our GPU memory.

We use the MNIST image classification dataset in a specific way: we use
Sequential MNIST in which we take the image by pixel rows and get a single
sequence and Permuted MNIST in which the pixels of each row are randomly
permuted according to some fixed permutation, which makes the task harder.
Each 28× 28 image is transformed into a sequence of 784 elements. The dataset
consists of 60 thousand training images and of 10 thousand testing images. We
reserve 10 thousand images from the training data for validation.

D.2 Main Experiments

All four polyphonic music datasets use the same configuration. We set context
size as 200 (as done in [27]), batch size as 16, number of layers as 1, for RRU we
use 1 ReLU layer and an output size of 64, all of these values we experimentally
found to work well. The training stops when there hasn’t been a lower NLL for
7 epochs.

For word-level Penn treebank we set context size as 64, batch size as 128,
number of layers as 2, embedding size of 64, for RRU we use 1 ReLU layer and
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an output size of 128, all of these values we experimentally found to work well.
The training stops when there hasn’t been a lower perplexity for 7 epochs.

For polyphonic music modeling and word-level language modeling, we run
hyperparameter optimization on each cell, where we tune the learning rate, the
dropout rate and the number of parameters in 100 runs, with ranges as described
in Table 3. We also tune the following parameters of the RNN cells: for RRU
we tune the middle layer size multiplier q in range [0.1; 8.0]; for the LSTM we
tune the forget bias in range [-3.0; 3.0]; for the Mogrifier LSTM we tune the
feature rounds in range [5; 6] and the feature rank in range [40; 90], as these
were mentioned as the optimal ranges in the Mogrifier LSTM paper. Optimal
values for the tuned parameters for each dataset and cell can be seen in Table 4.

Table 3. Parameter ranges for main experiments that used tuning. u means the value
is taken from the uniform scale and l means from the logarithmic scale. If ’.’ is present
in the range, it means it includes float numbers, else the range is only from integers.
’M’ means that the value is multiplied by 106. These ranges were picked because they
seemed sufficient to include all of the optimal values, which were approximately iden-
tified in the initial experiments.

Dataset Learning rate Dropout rate Number of parameters

JSB Chorales

[1e− 4; 1e− 2]l [0.0; 0.8]u
[1M − 15M ]u

Nottingham
MuseData

Piano-midi.de
Word-level Penn Treebank [10M − 30M ]u

For character-level Penn Treebank we set number of parameters as 24 million,
learning rate as 1e − 3, we set context size as 512, batch size as 64, number of
layers as 2, embedding size of 16, for RRU we use 2 ReLU layers, middle layer
size multiplier q as 4.0 and an output size of 128, for LSTM we set forget bias
as 1.0, for Mogrifier LSTM we use 4 feature mask rounds of rank 24, all of these
values we experimentally found to work well. The training stops when there
hasn’t been a lower BPC for 11 epochs. We run this configuration through ten
different dropout rates from 0.0 to 0.9 and report the one with the lowest BPC.

The remaining datasets – enwik8, text8, IMDB, Sequential MNIST, P-MNIST
– are run with no tuning. We tried to use the same configuration for each of the
cells, but it wasn’t always possible, because for some datasets some cells were
unable to train with the common configuration. The configuration that was the
same for each of the cells can be seen in Table 5 and the slight differences can
be seen in Table 6. All of these parameter values were experimentally found to
work well. enwik8 number of parameters (48 million) were taken from the Mo-
grifier LSTM paper and Sequential MNIST, P-MNIST number of parameters
(70 thousand) were taken from [28].
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Table 4. Optimal values for the main experiments that used tuning. ’M’ means that
the value is multiplied by 106. ”JSB Chorales” is denoted as ”JSB”, ”MuseData”
is denoted as ”Muse”, ”Piano-midi.de” is denoted as ”Piano” and ”Word-level Penn
treebank” is denoted as ”Word PTB” to save space.

Parameter JSB Nottingham Muse Piano Word PTB

RRU

Learning rate 0.00495 0.00029 0.00030 0.00077 0.00683
Dropout rate 0.79362 0.77186 0.77518 0.71577 0.66035

Number of parameters 6.9M 2.6M 8.6M 5.9M 25.9M
Middle layer size multiplier q 1.76958 7.31994 6.85699 3.68371 6.86655

GRU

Learning rate 0.00460 0.00454 0.00260 0.00932 0.00012
Dropout rate 0.67605 0.33787 0.64839 0.75069 0.27062

Number of parameters 1.8M 3.4M 1.9M 2.4M 10.0M

LSTM

Learning rate 0.01000 0.00882 0.00493 0.00727 0.00162
Dropout rate 0.30081 0.20310 0.35383 0.22951 0.10384

Number of parameters 1.3M 1.3M 1.8M 11.9M 14.2M
Forget bias 0.76843 -0.04104 1.85746 0.59993 -2.33114

Mogrifier LSTM

Learning rate 0.00255 0.00169 0.00135 0.00012 0.00074
Dropout rate 0.47521 0.73808 0.55499 0.77291 0.46872

Number of parameters 1.3M 6.0M 10.3M 2.9M 24.2M
Feature mask rounds 6 5 5 5 5
Feature mask rank 58 48 76 63 74

Table 5. Parameter values for parameters that are the same for each cell in non-
tuned main experiments. ”Sequential MNIST”, ”P-MNIST” are denoted together as
”MNISTs” and ”text8”, ”enwik8” are denoted together as ”wiki8s”. ’M’ means that
the value is multiplied by 106. [RRU ] means the parameter is used in the RRU cell
(same denotation is used for the other cells).

Parameter wiki8s IMDB MNISTs

Number of parameters 48M 20M 70K
Context size 256 512 784
Batch size 64 64 64

Number of layers 2 2 2
Embedding size 32 64 -

Breaks after ... epochs with no performance gain 3 5 5
[RRU ] ReLU layers 2 1 1

[RRU ] Middle layer size multiplier q 4.0 2.0 2.0
[RRU ] Output size 128 64 64
[LSTM ] Forget bias 1.0 1.0 1.0

[MogrifierLSTM ] Feature mask rounds 6 5 6
[MogrifierLSTM ] Feature mask rank 79 40 50
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Table 6. Parameters that differ between cells on some datasets in non-tuned main
experiments. ’*’ in ”Cell” field means that all cells have the same configuration.

Dataset Cell Learning rate Dropout rate

enwik8 * 1e-3 0.7

text8

RRU 1e-3

0.7
GRU 1e-4
LSTM 1e-3

Mogrifier LSTM 1e-3

IMDB * 1e-3 0.5

RRU 1e-3 0.7
Sequential MNIST GRU 1e-3 0.7

& P-MNIST LSTM 1e-4 0.7
Mogrifier LSTM 5e-5 0.5

D.3 Robustness Experiments

For Nottingham here we use the same configuration as the configuration for
Nottingham in the main experiments (Section D.2), except no tuning is done, so
we set middle layer size multiplier q as 2 and dropout rate as 0.5. There are 100
runs in total from a full grid search from learning rates 1e − 4, 2e − 4, 3e − 4,
5e− 4, 8e− 4, 13e− 4, 22e− 4, 36e− 4, 6e− 3, 1e− 2 (ten values from 1e− 4
to 1e− 2 in logarithmic scale) – and number of parameters – 1.0M, 2.6M, 4.1M,
5.7M, 7.2M, 8.8M, 10.3M, 11.9M, 13.4M, 15.0M (ten values from 1.0M to 15.0M
in uniform scale).

For word-level Penn Treebank here we use the same configuration as the con-
figuration for word-level Penn Treebank in the main experiments (Section D.2),
except no tuning is done, so we set middle layer size multiplier q as 2 and dropout
rate as 0.5. There are 100 runs in total from a full grid search from learning rates
– 1e−4, 2e−4, 3e−4, 5e−4, 8e−4, 13e−4, 22e−4, 36e−4, 6e−3, 1e−2 (ten
values from 1e− 4 to 1e− 2 in logarithmic scale) – and number of parameters –
10.0M, 12.2M, 14.4M, 16.7M, 18.9M, 21.1M, 23.3M, 25.6M, 27.8M, 30.0M (ten
values from 10.0M to 30.0M in uniform scale).

D.4 Dropout Experiments

For Nottingham here we use the same configuration as the configuration for
Nottingham in the main experiments (Section D.2), except no tuning is done,
so we set the number of parameters to 5 million, learning rate as 1e− 3, middle
layer size multiplier q as 2.0. We run this configuration through different dropout
rates — from 0.0 to 0.9.

For character-level Penn Treebank experiment configuration see character-
level Penn Treebank experiment configuration in Section D.2.
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