6

Natural Language Conditioned Planning of
Complex Robotics Tasks

Toms Eduards Zinars, Oskars Vismanis, Peteris Racinskis,
Janis Arents, and Modris Greitans

Institute of Electronics and Computer Science, Latvia

Abstract

As natural language processing advances in the field of robotics, enabling
seamless human-robot interaction, it becomes imperative to identify the most
effective approach for conditioning complex robotics tasks using natural
language commands. This article reviews various state-of-the-art methods
for natural language-conditioned planning, with a particular focus on mobile
manipulation. The authors explore and review different architectures and
techniques to comprehend, interpret, and execute natural language com-
mands. Challenges are identified along the way, and conceptual architecture
is proposed to tackle them in an efficient manner.

Keywords: natural language processing, mobile manipulation, action primi-
tives, edge Al

6.1 Introduction

Everyday interactions between people are usually performed in a very casual
manner through natural language, or NL, as it is an comfortable way of
communication. This has been carried over to our appliances, such as phones
and cars, with the use of voice commands. It logically follows that robotic
assistants, be they industrial or service, which operate in an environment with
people of various machinery handling skill levels, would benefit from a user

131

132 Natural Language Conditioned Planning of Complex Robotics Tasks

interface utilizing Natural Language Processing (NLP) techniques to process
unstructured input. As the environments in which these systems get deployed
are diverse and varied, a general understanding of language and its relation to
objects is crucial to a rational implementation.

Large Language Models (LLM) [1][2] have shown to be very capable of
tackling the task of inferring NL inputs for commanding a robotic agent. They
can be made to operate with multi-modal information [3], but they often rely
on cloud service models that require immense computing resource [4][5][6].
The possibility exists to use smaller models that can be run locally [7][2].
Robotic systems are typically specialized to operate under certain conditions,
and a trained technician must perform any new adaptations. However, as
real-life environments are usually unique in their layout and the objects they
contain, it can be hard to predict what the robotic agent needs to know. In
section 1.2, we do a quick overview of NL processing, LLM and multi-modal
embeddings and their recent implementations and uses in planning for robotic
systems.

To function in such environments, a more general approach for represent-
ing robot tasks can be used, as, fundamentally, a robot system can be thought
of as a handful of basic operations, but they are usually very task-dependant.
One such approach is using action primitives. They provide the high-level
planner with an abstract, symbolic representation of available actions so a
task plan can be made. Another role they fulfill is low-level planning, a set
of functions that can be adapted to specific scenarios and reused for different
tasks [8]. Details about action primitives, their synthesis and implementations
are described in section 1.3.

The primary type of robot control we address with the approach outlined
in this chapter is mobile manipulation, which can be described as the joint
control of a mobile base and a manipulator arm. The overall workflow of
such a system can be generalized to receiving, planning and executing a task.
In our conceptual architecture, the function of receiving a task is done with
NL commands. For this, a two-stage technique is proposed. A high-level
LLM-based algorithm for mapping NL commands into a constrained space
of action primitives, and a library of action primitives at the low level, which
is further elaborated on in section 1.5. This chapter also includes section
1.4, where we provide a brief overview of identified challenges and issues
regarding both the practical use of NLP and the implementation of Action
Primitives, while section 1.6 concludes the chapter with our views on future
developments.

6.2 Natural Language Processing for Robotics 133

6.2 Natural Language Processing for Robotics

Natural language is vast and vague, so much so that people often have
problems understanding each other. An NL command can consist of a request
that only makes sense in the context of the situation and the environment. It
is not enough for a robotic system to just deduce what is being asked of it but
also to be able to ground this information in the environment it finds itself in
and act upon through a concise and safe plan of actions.

The current state-of-the-art performance in NLP can be found in language
models based on transformer architecture [9], specifically the LLMs. Starting
at 10 billion, typically having 100-300 and with a couple exceeding 1 tril-
lion, these LLMs have demonstrated impressive performance across various
language-related tasks [1][10].

6.2.1 Large language models

Large Language Models are powerful natural language interpreters [11]. An
important quality they share with the smaller models is multitask learning —
the ability for one model to become relatively proficient at several different
tasks but masters of none [12]. However, as their size grows and performance
increases [13], these models begin to overtake previous-generation specialist
fine tuned models [10][11].

Training large language models from scratch is a very expensive process
in terms of energy, computing and time, typically requiring massive clusters
of dedicated high-end hardware that train them non-stop for several weeks
[2]. As this is only feasible for large tech corporations such as Google, Meta,
OpenAl, Amazon and Huawei [2], a pre-trained model can be specialized
for a downstream task through fine-tuning - using a specialized dataset to
introduce into the model specific knowledge or teach it new operations all
together [14], making them more accessible for specific tasks.

When the parameter count reaches into the tens and hundreds of billions,
the language models begin to exhibit new qualities that are not present in
their smaller counterparts, referred to as emergent abilities [1][15], three
prominent ones, as highlighted in [1], are:

* In-context learning [11]- the ability to perform tasks not part of
the training corpus, based on an instruction and several input-output
examples(few-shot) provided in the prompt;

* The instruction following [14] relies on fine-tuning a model using
a dataset containing natural language instructions, which results in

134 Natural Language Conditioned Planning of Complex Robotics Tasks

improved zero-shot (no example given) prompting performance for
unseen tasks;

* Step-by-step [16] improves the model’s complex reasoning by leverag-
ing chain of thought prompting by adding step-by-step instructions to
the examples for a few-shot task prompt.

As fine-tuning takes computing resources and time, many pre-trained
models are fully capable of being used out of the box [11]. By carefully
structuring the input prompts, it is often possible to condition the model to
provide the desired output for the task at hand [17], an approach known as
prompt engineering [1].

As a way to improve the fine-tuning process, a lot of work has been done
in developing various parameter-efficient fine-tuning methods (PEFTs) [18]
that consider fine-tuning only parts of the overall model. Instead of having
several different fine-tuned copies of the same LLM weights, using methods
such as Low-Rank Adapters (LoRA) [19] one can have a single instance of an
LLM and then simply apply the corresponding fine-tuned adaptation, saving
on space and compute resource.

Running the LLM inference process, even on the smaller models, requires
capable hardware, primarily GPUs with sufficient VRAM [7]. The model’s
parameters are typically stored in a 16-bit float format (FP16), translating to
roughly 2GBs for every 1 billion parameters. A remedy for this issue is model
quantization, a method where the parameters of the model are converted into
smaller 8-, 4-, 3- and even 2-bit formats [20], which (plural) can reduce
the required VRAM down from 14GB to roughly 4 GBs for a 7B model
(7B representing 7 billion parameters) when using 4-bit quantization, with
marginal loss to performance [7]. The requirements can be further reduced
by using methods that share inference between CPU and GPUs [21], which
provides perspectives for application in edge Al.

As language models have been trained on general data such as textual
information sourced from books or the internet and/or coding languages
[1][2][22], they gain a broad internal knowledge base that can be leveraged to
create a human-machine interface capable of decoding obscure NL requests
into actions understandable to a robotic agent system [4][17].

6.2.2 Multi-modal embeddings

The recent progress in autoregressive and sequence-to-sequence NLP pro-
cessing with LLMs has enabled a number of related advances. In particular,
the abstract vector nature of the tokens being processed by transformers has

6.2 Natural Language Processing for Robotics 135

been exploited to create mappings between radically different data modal-
ities. CLIP [3], short for Contrastive Language-Image Pre-training, is a
notable example. It jointly trains an image classifier and text encoder on
image-caption pairs. Each model outputs a vector in the same latent space.
The cosine similarity of vectors corresponding to matching image-caption
pairs is maximized, while that between all others is minimized. The result is
a pair of models capable of mapping the greatly dissimilar image and text
input spaces to a common latent “concept” space.

CLIP and similar systems have since been commonly described as
vision-language models (VLMs). Subsequent work, such as LSeg [23] and
ConceptFusion [24], has been done to extend the vision model in a VLM
to produce segmentation maps — embeddings for each image in a pixel.
These have subsequently found use in robotics, particularly in creating maps
amenable to natural language queries. For example, in [25], a 2-dimensional
grid map is constructed using LSeg and depth imagery, which can then
be used to find navigation goals using text prompts. ConceptFusion [24]
expands upon the mapping problem, producing 3-dimensional embedding-
tagged point clouds. Some approaches do away with explicit maps entirely,
instead using a Neural Radiance Field to predict the embedding associated
with any point in the environment directly [26].

The ability of transformer models to map between and autoregressively
generate sequences of arbitrary vectors has been directly exploited for robot
control in works such as [27], where robot actions are predicted directly from
text prompts and images of the scene in which the robot should operate. The
inputs need not be limited to a single type of embedding — in [28] and [29], a
large transformer is trained to operate on input sequences containing multiple
types of embeddings — such as VLM tokens, robot state encodings, scene
representations and past actions — with PaLM-E in [29] being directly based
on a pre-trained LLM.

6.2.3 Recent implementations of high-level planning for mobile
manipulation

The practical implementation of language models for use in high-level plan-
ning of mobile manipulator systems has taken various approaches. Some
approaches use the language models to extract language features that are
further passed into more specialized modules for processing [30][31], others
use the language models as active elements of the planning process [5][6][32],
and others yet use the models for low-level planning [33]. Some models

136 Natural Language Conditioned Planning of Complex Robotics Tasks

perform their own mapping of the environment through computer vision
[30][34], but it would seem that map integration is an underutilized solution,
though some works are exploring combining embeddings from the language
model with embeddings stored in a semantic map [6].

Many of the highlighted works rely on prompting and using pre-trained
models [4][5][6][32][33][35]. The importance of proper prompting technique
is explored in [19], which presents a method for selecting and formatting
prompts to elicit outputs usable in robotic systems. They define a starting
prompt that describes the role the LLM is supposed to play and condition
it to respond only when directly prompted to by a specific keyword. That is
followed up with a sequence of instructions, explanations and templates that
describe the desired output format and contents. The prompt is finished up
by providing several examples of how the output should look. The ability to
provide NL feedback to improve and correct mistakes during inference is also
showcased.

While not an example of a natural language command, ProgPrompt
[32] takes an input prompt of Python code containing imports of action
primitives, a list of available objects, example tasks and the start of the
desired operation. The LLLM then returns a generated plan in Python that uses
assertions to ensure a feedback loop once the agent encounters variables in
the environment and can successfully execute the appropriate action.

Lang2LTL [6] utilizes a modular system where LLMs are used to perform
several subtasks in the interest of generating a grounded relation to objects
and places that the system stores in a database. One module is tasked with
extracting place names from the request prompt. These extracted names are
then compared to the database objects through embedding cosine similarity,
and then generalizing the input request with substitutions and passing it
through a fine-tuned LLM symbolic translator that generates the LTL for-
mula, finished by inserting the found database objects in their respective
substitution locations.

Text2Motion [5] utilizes an LLM model that performs task planning in
conjunction with geometric feasibility planning that evaluates if the plan
generated by the LLM is valid or not. They evaluated planning the whole
sequence of actions and then validating it, planning and validating each
individual step of the sequence and a hybrid system that tries creating a full
plan, falls back to individual step in case of a failure, then tries finishing the
plan fully again. For implementation, they rely on OpenAI’s GPT series [36]
and execute their system through prompt engineering.

6.2 Natural Language Processing for Robotics 137

Language to Rewards [33] employs a two-stage LLM setup in the form
of a Reward Translator, where the first LLM (Motion descriptor) is used to
translate the input sentence into a structured natural language instruction. The
second LLM (Reward Coder) then generates a usable code in the form of
reward functions that can be passed directly to a low-level motion controller,
skipping the use of action primitives altogether. Both LLMs are conditioned
by leveraging in-context learning by prompts. The first one contains templates
to use when creating the task description, while the second is prompted with
a general program description. Both prompts contain a list of instructions to
guide inference to the desired result. While this approach doesn’t perform
long-horizon tasks, it does showcase the possibility of using LLMs for low-
level planning to some degree.

Say-Can [3] explored the issue of grounding an LLM planning system
in the real world, as without any feedback elements or information about the
current environment, the language model can propose logical but contextually
impossible solutions such as suggesting using a vacuum cleaner when one
isn’t available. They achieved this by using a two-part system - the LLM
provides probabilities for action relevance to the given task, while a value
function provides probabilities of how likely it is to succeed in doing specific
actions. The multiplication of these two values is chosen as the action for the
plan to perform.

Inner Monologue [35] explores using feedback mechanisms to improve
task completion. By being able to receive information from the environment
in the form of language input, such as sensory data about detected objects
or whether the planned action was successful or not, the agent can attempt
to perform the action again or replan, whereas without such feedback the
agent would fail the task outright. When the agent is met with an ambiguous
situation, such as a request for “a drink”, by asking the user for clarification,
it can form a dialogue that helps execute the task more successfully. They
also question if the answering could be done by another LLM as well.

There are doubts by some if LLMs are reliable enough to be used
for planning operations [31][37] but do recognize their utility as language
interpreters. One such implementation is proposed in [31] with LLM+P, a
language model coupled with a classical planner. A classical planner provides
proven ability in task solving, while the LLM can provide its understanding
of language to be able to interpret a large amount of tasks and then translate
them to a structured planning language such as PDDL [47].

138 Natural Language Conditioned Planning of Complex Robotics Tasks

Language is only one part of a system meant to operate in an environment.
The ALFRED benchmark was introduced in 2020 as a way to test agent sys-
tems that use both natural language instructions and ego-centric vision [38].
While not the first, it did combine several functions to create a benchmark that
tests proposed systems in a non-reversible, partially observable environment.
Models are tasked with solving basic household tasks within a limited number
of actions, which typically involve moving and modifying objects using tools
or special locations, requiring a specific sequence of actions to execute. Many
models also build a map representation of the environment [30][34]. The
baseline model relied on an LSTM (long-short-term memory, predecessor to
the transformer architecture) based language model that managed to achieve
only a 0.4% success rate in the unseen tests [38]. Later attempts would
implement PLMs such as BERT [39] and improve the success rate to 50%
[34]. At the time of writing, the best-performing models that have available
materials are Prompter [30] and CAPEAM [34], both utilizing BERT for
their language processing. BERT is an older language model (from late 2018)
with sub-1 billion parameters, far from state-of-the-art in language models,
making a direct comparison hard as LLM-based systems seem to rely on their
own evaluation methods [3].

Prompter [30] utilizes its language model in a semantic search module,
using natural relations between objects (apples found in kitchens, tooth-
brushes in bathrooms), speeding up the search. The benefits of using a
language model for such a role is leveraging its inherent knowledge of
language to determine word relations, whereas previous methods relied on
using additional training. For its vision substream, based on [39], the agent
creates a 2D top-down semantic map from images it received through its ego-
centric vision, which is a 2D RGB image that is processed into a depth map
and segmented to create masks.

CAPEAM [34] uses a fine-tuned BERT implementation for predicting
what predefined role fits what words from the input sentence. Context Aware
Planning module uses a sub-goal planning element that first finds a general
template to use based on input requests and then a so-called “detailed plan-
ner” to insert the contextual information into predefined places. Environment
Aware Memory is responsible for vision operations, utilizing memorization
for object locations as well as saving previous segmentation masks, as it was
found it helps to identify objects that become obscured through later actions.

6.3 Action Primitives for Mobile Manipulation 139

6.3 Action Primitives for Mobile Manipulation

In [40], the authors define the concept of situated robotics, which describes
robotic systems in complex, dynamic or, in other words, situated environ-
ments. The amount of an environment’s situatedness directly affects the
complexity of the robot control system and its need to adapt to new situations,
which shows that the more complex the environment, the more complex the
control system needs to be. Derived from different action definitions, differ-
ent approaches to robot control exist, such as reactive control, deliberative
control, hybrid control (a combination of the first two), and behaviour-based
control [40]. Reactive Controls can be referred to as an IF... THEN rule inter-
preter while Deliberative control - as functioning in a higher level. Behaviour-
based control, on the other hand, functions a bit differently; at its core is
the concept of behaviours, which are functionalities varying in complexity
that get activated depending on their predefined inputs, which can be sensory
data or other behaviours, and they output control commands for actuators or
other behaviours. Where the other control type’s lack in either computation
efficiency or complexity, the behaviour-based control can manage a combi-
nation of the two, that is easier to engineer and upgrade than hybrid control
[40]. From the concept of behaviours, abstract or primitive behaviour can
be derived, which is a more general function made to be reusable in different
scenarios. These are often referred to in the literature as the action primitives
(aka manipulation primitives, task primitives, skills etc.).

To plan and execute tasks in situated environments, some form of Task
and Motion Planning (TAMP) is usually required, as seen in [4][41][42][43],
and for that, it is best to have representations of the environment and available
robot actions. As mentioned before, dynamic environments can have many
different actions fulfilled in them and engineering all of them can be a time-
consuming process [if even possible]. A better approach might be to use
said action primitives, which would be task-specific only in the execution
phase, depending on sensory inputs. This representation of behaviours allows
for a more general form of activation conditions as these are usually atomic
functions that do only one thing, but not in a way feedback control would be
managed (for example, move by a certain angle) [8][44][40]. The granularity
of primitives depends on the usage, but in robotics, it is usually a control com-
mand to make a robot move. As action primitives are usually computationally
light, one system can be made to work for different tasks.

Primitives can be divided by their usage, the simplest form being the
primitive itself. After primitives come actions, and after that - activities [44].

140 Natural Language Conditioned Planning of Complex Robotics Tasks

Taking as an example a robot doing picking, that could be considered an
action, which would be made up of multiple primitives, in this case, moving
to the object and closing the gripper. The case of putting multiple actions in
a sequence, such as picking and placing, could be referred to as an activity of
moving an object. This way of referencing actions is especially useful for task
planning, as the symbolic representation of a task does not always include all
the steps needed to complete it [41]. If, for example, the task of picking up
an object and placing it somewhere is given, the task planner does not need
to think about the specific primitives needed, such as moving the arm to the
specific spot and closing the gripper, it just needs to make a sequence of
actions, that fulfil the task. The primitives are then left for the motion planner
to check geometrically if the task plan is feasible. Many systems would then
use a so-called action library or a set of skills [41][42][45] that can be used
by the task planner to know what the system is capable of and use it when
making plans.

Symbolically, actions and the action-state relations can be predefined
using task planning languages such as STRIPS [46] or its successor, PDDL
[47], or it can be done during the planning process using Large Language
Model (LLM) prompt engineering [48]. Regarding the environment, the
representation can be about locations, objects, etc. Actions refer to what tools
the robot has at its disposal, in other words, what it can do to accomplish its
tasks.

6.3.1 Methods for creating primitives

There can be many kinds of primitives made for specific applications, which
means that creating them is a process of its own, and there are different ways
of synthesis. For example, Jeon et al. [41] create a service robot application,
which utilizes an action library in which one of the actions is hold_object.
This action can be decomposed into two action primitives — approach_object
and close_hand. For task planning purposes, actions, action primitives and
their interrelations are represented using the PDDL language. This allows
them to be used with PDDL-supported planners. In addition, it predefines the
action’s preconditions, effects, requirements, etc. This method deeply relies
on the engineer’s capabilities and understanding of the tasks they’re making
the primitives for. Also, in the case of wanting to add new functionality, it can
be a long process, depending on the complexity of the task.

Action primitives can also be extracted from human motion via imitation
learning (IL) [49]. In [50], manually segmented human motion capture data

6.3 Action Primitives for Mobile Manipulation 141

is used with a spatio-temporal non-linear dimension reduction technique to
cluster similar segments of motion into generalized primitives. Similarly, in
[43], imitation learning is used, in terms of behavioural cloning (BC), to learn
action primitives, but their combinations into actions are then learned with
reinforcement learning (RL). With these methods, the system is able to do
the task of pouring cereal into a bowl. In [51], however, the stereotypical
motions of a human picking up a cup are recorded and used as a basis for
actions, though in the form of dynamic movement primitives (DMP).

A different approach to creating primitives is only making them when
needed. Gizzi et al. [42] look at using action primitives as a way of creative
problem-solving. They use the definition of a MacGyver problem [52], which
describes an environment that has everything necessary for successful task
execution, and the robot has all the tools it needs. Still, the specific approach
it must take is unknown. The system begins with a set of predefined actions
and is tasked to do an indirect task, such as reaching an obstructed object
or location. Whenever met with a situation where the robot cannot fulfil its
task with the actions it knows, it starts generating combinations of available
objects and interactions with them using the available actions. The environ-
ment and actions are described using PDDL. In this case, the actions available
are obtain_object and press_button, and the robot is tasked with reaching
an object on the other side of a wall. There are also buttons present. When
the initial obtain_object fails, it starts generating different combinations of
actions and tries executing the feasible ones one by one until it manages to
hold down one of the buttons to move the wall.

In the case of service robots or any robots that might work in envi-
ronments simultaneously with humans, there is also a positive effect when
creating the primitives to function similarly to human motion, as humans can
better understand them from the point of predictability. This approach also
allows for easier training using imitation learning [51].

6.3.2 Action primitive implementations

In relation to mobile manipulation or manipulation in general, the action
primitive has been used consistently in systems that do more general or
environment-adaptive tasks. In [42], action primitives are used as a basis for
finding solutions to given problems in the sense of finding new primitives that
would be applicable to the situation.

In [53], such action primitives as pulling, pushing, grasping and pivoting
are included. A dual-arm robot ABB YuMi with custom tactile sensors is

142 Natural Language Conditioned Planning of Complex Robotics Tasks

used. With the predefined action library and tactile feedback combination, the
system is able to do dexterous manipulation based on robot/object interaction
plans. This same setup is used in [54] to manipulate rigid objects based
on pointcloud data using long-horizon planning. The planning problem is
defined as an action primitive sequencing, where the symbolic representation
of actions as action primitives allows for the planner to set aside the reasoning
about robot-object dynamics.

For service robots, action primitives are used to create and execute plans
for such tasks as pouring cereal [43] or juice [41]. In [43], basic action
primitives are learned and then combined into such actions as pick, bowl
(picking an object and placing it in a bowl) and breakfast (moving objects
in a pouring manner directed toward the bowl). For similar tasks, [41] uses
such primitives as approach_object, close_hand, and move_arm. These are
then used in plans to accomplish tasks like moving an object out of the way
and then moving a package in a pouring motion.

6.4 Identified Challenges

Robotic agents designed to work alongside people are under great scrutiny,
as such systems must be, first and foremost, safe, adequately efficient and
easy to use. Such systems have to be robust, with no room for ambiguity. Yet,
the datasets that language models are trained on come with biases that the
model inherits and these biases can affect the inference process and result in
seemingly random erroneous outputs [1][37] or repetitive cycles [5]. There is
also a general risk of hallucination from LLM providing absurd plans to the
robotic agent system or failing to generate anything at all.

Many promising implementations rely on using the closed-source GPT
series for their research [17][5][6][33]. While these models are state-of-the-
art and the main target for other models to beat [22], a real implementation
for any mobile agent lacks practical autonomy if it must have a constant
connection to a cloud service. If it is true that certain traits of language
models are limited to the larger models and begin appearing only at 100B+
parameters [1][15], even with quantization, these larger models would require
powerful GPUs that are impractical to be placed onto a physical agent
to ensure autonomous operation, limiting the system to require a local
network where a remote resource provides inference to the system. This
impedes taking advantage of the LLMs emergent abilities for edge Al
applications.

6.5 Conceptual Architecture 143

One of the main focuses of NL commanded mobile manipulation systems
is higher autonomy, but they often still lack in their abilities. For example, a
clear bottleneck of such systems is the range and capabilities of the skills
they possess as [4], even if the NL command can be translated to the system
correctly, it cannot execute something it does not know how.

Another challenge, directly involving manipulation, can be addressed in
the form of object recognition and grasping. A real environment usually has
many different types of objects, and a robot operating in such an environment
would be expected to be able to manipulate any of them. Modern approaches
manage such a problem using 3D model databases from the internet [51] or
pre-trained vision-language models [55] that can recognize previously unseen
objects. Grasping them is then dependent on grasp point recognition [S6][57]
and the quality of active primitives used.

6.5 Conceptual Architecture

Based on what has been covered, we have considered various implementa-
tions for robotics systems with natural language commands. There is no one
definitive architecture (as can be seen by examples in chapter 6.2.3), given
differing sizes, scopes and environments in which such agents are expected
to operate. The underlying principles we believe such a system would need
to have are the need to process the language input, a way to locate itself and
objects in the environment, plan its actions and finally execute the plans at
the physical level, with a feedback system to account for changing factors in
the environment or the user’s request.

In Figure 6.1 we present a simplified interpretation of how such a system
could be structured in two distinct main modules or levels — the language pro-
cessing module and the execution module. Other works have also approached
the problem with some type of two-part design [4][34]. What may seem miss-
ing from this schematic is a dedicated planning module, but here it is under-
stood that high-level or task planning is done by the NLP module, whereas
low-level planning or motion planning is done in the execution module.

At the core of the NLP module would be an LLM that could be run locally,
at least on a cluster, but which one fits this use case needs to be investigated.
The module’s task is to interpret the user’s input request in a way that the rest
of the system may act upon it. For successful communication between the
levels, the execution module provides the NLP module with a description of
what it can do and how the language module output needs to be formatted,
allowing for new capabilities to be introduced to and utilized by the system

144 Natural Language Conditioned Planning of Complex Robotics Tasks

USER

-
INPUT: Clarification
Natural Request
Language 1

)
> Instruction LLM Search | 1 formation base Renew
Template Map/Database

Natural Language Processing

(NLP) Module Search
Request &
Replanning Update .
Environment

Instruct model about available actions

A\
OUTPUT: Organized Action Plan Execution Module
1. Move(CurPos, Loc(A))
2. PickUp(A) Interact
3. Move(Loc(A), Loc(B)) —> Action
EL g’lace(A- B) Primitive 1

Figure 6.1 Proposed Mobile Manipulator Control System

that were not originally accounted for. An interface with a map (or database)
grounds the language module in its current environment and permits the NLP
module access to task-relevant information. It would be preferable as well
for the NLP module to be able to take received feedback from the execution
module and present it to the user for clarification.

The execution module consists of an action library, which is a set of action
primitives the agent can execute to accomplish tasks. The module is respon-
sible for physical execution, so motion planning is also done here. Whenever
a task plan is received, this module checks its geometrical feasibility and, in
case of a failure, requests for a replanning. Once a feasible plan is made, the
module executes the task sequence.

The main benefits of such a layout is the idea that the information
about the environment is contained within the semantic map, while the LLM
possesses general linguistic knowledge. As action primitives should be the
same regardless of where it is, by combining information extracted from the
input with information available on the map, the system is not hard-coded to
a particular place. By relying on a smaller and locally run LLM instance, the
hope is to ensure the ability of the system to operate successfully in an edge
Al use case.

References 145

6.6 Conclusions and Outlook

Natural language application in robotics is an ever more relevant field of
research and development. The rise of LLMs has made applying general
language understanding to computer systems seem deceptively trivial, but
there is still much ambiguity to overcome. We hope to see the field develop
in both directions - more research done on larger models to see how much
they are capable of, as well as more development to bring these high-level
abilities down to smaller and smaller model sizes to enable true edge Al
applications.

When working in complex environments, action primitives can be used
as a powerful tool to generalize actions available to a robotic system. This
can be useful both with task and motion planning as they allow for these
two processes to be less intertwined without affecting their effectiveness.
There are different approaches to creating action primitives, and the future
seems to be headed towards automated synthesis with different machine-
learning techniques. This chapter proposes a conceptual architecture for
NL-commanded mobile manipulation, consisting of an NLP module for
command interpreting and high-level planning and an execution module that
utilizes action primitives for low-level planning and execution.

Acknowledgements

This research was conducted as part of the Edge Al “Edge Al Technologies for
Optimised Performance Embedded Processing” project, which has received
funding from KDT JU under grant agreement No 101097300. The KDT
JU receives support from the European Union’s Horizon Europe research
and innovation program and Austria, Belgium, France, Greece, Italy, Latvia,
Luxembourg, Netherlands, and Norway.

References

[1] Zhao, W. X., Zhou, K., Li, J., Tang, T., Wang, X., Hou, Y., Min, Y.,
Zhang, B., Zhang, J., Dong, Z., Du, Y., Yang, C., Chen, Y., Chen, Z.,
Jiang, J., Ren, R., Li, Y., Tang, X., Liu, Z., Liu, P., Nie, J., & Wen, J.
(2023). A Survey of Large Language Models. ArXiv, abs/2303.18223.

[2] Naveed, H., Khan, A. U., Qiu, S., Saqib, M., Anwar, S., Usman, M.,
Barnes, N., & Mian, A. S. (2023). A Comprehensive Overview of Large
Language Models. ArXiv, abs/2307.06435.

146 Natural Language Conditioned Planning of Complex Robotics Tasks

[3] Radford, Alec, Jong Wook Kim, Chris Hallacy, Aditya Ramesh,
Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela
Mishkin, Jack Clark, Gretchen Krueger and Ilya Sutskever. “Learn-
ing Transferable Visual Models From Natural Language Supervision.”
International Conference on Machine Learning (2021).

[4] Ahn M., Brohan A., Brown N., Chebotar Y., Cortes O., David B., Finn
C., Gopalakrishnan K., Hausman K., Herzog A., Ho D., Hsu J., Ibarz J.,
Ichter B., Irpan A., Jang E., Ruano R. J., Jeffrey K., Jesmonth S., Joshi
N.J.,, Julian R. C., Kalashnikov D., Kuang Y., Lee K.-H., Levine S., Lu
Y., Luu L., Parada C., Pastor P., Quiambao J., Rao K., Rettinghouse J.,
Reyes D. M., Sermanet P., Sievers N., Tan C., Toshev A., Vanhoucke
V., Xia F, Xiao T., Xu P, Xu S., Yan M. Do As I Can, Not As I Say:
Grounding Language in Robotic Affordances. Conference on Robot
Learning, 2022.

[5] Lin, K., Agia, C., Migimatsu, T., Pavone, M., & Bohg, J.
(2023). Text2Motion: From Natural Language Instructions to Feasible
Plans. ArXiv, abs/2303.12153.

[6] Liu, J., Yang, Z., Idrees, 1., Liang, S., Schornstein, B., Tellex, S., &
Shah, A. (2023). Lang2LTL: Translating Natural Language Commands
to Temporal Robot Task Specification. ArXiv, abs/2302.11649.

[7] Frantar, E., Ashkboos, S., Hoefler, T., & Alistarh, D. (2022). GPTQ:
Accurate Post-Training Quantization for Generative Pre-trained Trans-
formers. ArXiv, abs/2210.17323.

[8] Schaal S., Ijspeert A., Billard A. Computational approaches to motor
learning by imitation. In: Philosophical Transactions of the Royal
Society B: Biological Sciences, 2003, 358(1431), 537-547.

[9] Vaswani, A., Shazeer, N.M., Parmar, N., Uszkoreit, J., Jones, L., Gomez,
A.N., Kaiser, L., & Polosukhin, I. (2017). Attention is All you Need.
NIPS.

[10] OpenAl (2023). GPT-4 Technical Report. ArXiv, abs/2303.08774.

[11] Brown, T.B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P.,
Neelakantan, A., Shyam, P., Sastry, G., Askell, A., Agarwal, S., Herbert-
Voss, A., Krueger, G., Henighan, T. J., Child, R., Ramesh, A., Ziegler,
D.M., Wu, J., Winter, C., Hesse, C., Chen, M., Sigler, E., Litwin, M.,
Gray, S., Chess, B., Clark, J., Berner, C., McCandlish, S., Radford, A.,
Sutskever, 1., & Amodei, D. (2020). Language Models are Few-Shot
Learners. ArXiv, abs/2005.14165.

[12] Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., & Sutskever, 1.
(2019). Language Models are Unsupervised Multitask Learners.

References 147

[13] Kaplan, J., McCHuang, W., Xia, F., Xiao, T., Chan, H., Liang, J., Flo-
rence, P.R., Zeng, A., Tompson, J., Mordatch, I., Chebotar, Y., Sermanet,
P., Brown, N., Jackson, T., Luu, L., Levine, S., Hausman, K., & Ichter,
B. (2022). Inner Monologue: Embodied Reasoning through Planning
with Language Models. Conference on Robot Learning.andlish, S.,
Henighan, T. J., Brown, T. B., Chess, B., Child, R., Gray, S., Radford,
A., Wu, J., & Amodei, D. (2020). Scaling Laws for Neural Language
Models. ArXiv, abs/2001.08361.

[14] Wei, J., Bosma, M., Zhao, V., Guu, K., Yu, A. W, Lester, B., Du, N., Dai,
A. M., & Le, Q. V. (2021). Finetuned Language Models Are Zero-Shot
Learners. ArXiv, abs/2109.01652.

[15] Wei, J., Tay, Y., Bommasani, R., Raffel, C., Zoph, B., Borgeaud, S.,
Yogatama, D., Bosma, M., Zhou, D., Metzler, D., Chi, E. H., Hashimoto,
T., Vinyals, O., Liang, P., Dean, J., & Fedus, W. (2022). Emergent
Abilities of Large Language Models. Trans. Mach. Learn. Res., 2022.

[16] Wei, J., Wang, X., Schuurmans, D., Bosma, M., Chi, E. H., Xia, F, Le,
Q., & Zhou, D. (2022). Chain of Thought Prompting Elicits Reasoning
in Large Language Models. ArXiv, abs/2201.11903.

[17] Wake, N., Kanehira, A., Sasabuchi, K., Takamatsu, J., & Ikeuchi, K.
(2023). ChatGPT Empowered Long-Step Robot Control in Various
Environments: A Case Application. ArXiv, abs/2304.03893.

[18] Lialin, V., Deshpande, V., & Rumshisky, A. (2023). Scaling Down
to Scale Up: A Guide to Parameter-Efficient Fine-Tuning. ArXiv,
abs/2303.15647.

[19] Hu, J. E., Shen, Y., Wallis, P., Allen-Zhu, Z., Li, Y., Wang, S., & Chen,
W. (2021). LoRA: Low-Rank Adaptation of Large Language Models.
ArXiv, abs/2106.09685.

[20] Chee, J., Cai, Y., Kuleshov, V., & Sa, C.D. (2023). QulP: 2-Bit
Quantization of Large Language Models With Guarantees. ArXiv,
abs/2307.13304.

[21] Gerganov, G. Port of Facebook’s LLaMA model in C/C++. Available at:
https://github.com/ggerganov/llama.cpp [Accessed August 23, 2023]

[22] Roziere, B., Gehring, J., Gloeckle, F., Sootla, S., Gat, L., Tan, X. E., Adi,
Y., Liu, J., Remez, T., Rapin, J., Kozhevnikov, A., Evtimov, 1., Bitton,
J., Bhatt, M. P., Ferrer, C.C., Grattafiori, A., Xiong, W., D’efossez, A.,
Copet, J., Azhar, F., Touvron, H., Martin, L., Usunier, N., Scialom,
T., & Synnaeve, G. (2023). Code Llama: Open Foundation Models for
Code.

148 Natural Language Conditioned Planning of Complex Robotics Tasks

[23] Li, Boyi, Kilian Q. Weinberger, Serge J. Belongie, Vladlen Koltun
and René Ranftl. “Language-driven Semantic Segmentation.” ArXiv
abs/2201.03546 (2022).

[24] Jatavallabhula, Krishna Murthy, Ali Kuwajerwala, Qiao Gu, Mohd.
Omama, Tao Chen, Shuang Li, Ganesh Iyer, Soroush Saryazdi, Nikhil
Varma Keetha, Ayush Kumar Tewari, Joshua B. Tenenbaum, Celso
M. de Melo, M. Krishna, Liam Paull, Florian Shkurti and Antonio
Torralba. “ConceptFusion: Open-set Multi-modal 3D Mapping.” ArXiv
abs/2302.07241 (2023).

[25] Huang, Chen, Oier Mees, Andy Zeng and Wolfram Burgard. “Visual
Language Maps for Robot Navigation.” 2023 IEEE International Con-
ference on Robotics and Automation (ICRA) (2022): 10608-10615.

[26] Shafiullah, Nur Muhammad (Mahi), Chris Paxton, Lerrel Pinto, Soumith
Chintala and Arthur Szlam. “CLIP-Fields: Weakly Supervised Semantic
Fields for Robotic Memory.” ArXiv abs/2210.05663 (2022).

[27] Brohan, Anthony, Noah Brown, Justice Carbajal, Yevgen Chebotar,
Krzysztof Choromanski, Tianli Ding, Danny Driess, Chelsea Finn,
Peter R. Florence, Chuyuan Fu, Montse Gonzalez Arenas, Keerthana
Gopalakrishnan, Kehang Han, Karol Hausman, Alexander Herzog, Jas-
mine Hsu, Brian Ichter, Alex Irpan, Nikhil J. Joshi, Ryan C. Julian,
Dmitry Kalashnikov, Yuheng Kuang, Isabel Leal, Sergey Levine, Hen-
ryk Michalewski, Igor Mordatch, Karl Pertsch, Kanishka Rao, Krista
Reymann, Michael S. Ryoo, Grecia Salazar, Pannag R. Sanketi, Pierre
Sermanet, Jaspiar Singh, Anika Singh, Radu Soricut, Huong Tran,
Vincent Vanhoucke, Quan Ho Vuong, Ayzaan Wahid, Stefan Welker,
Paul Wohlhart, Ted Xiao, Tianhe Yu and Brianna Zitkovich. “RT-2:
Vision-Language-Action Models Transfer Web Knowledge to Robotic
Control.” ArXiv abs/2307.15818 (2023).

[28] Reed, Scott, Konrad Zolna, Emilio Parisotto, Sergio Gomez Col-
menarejo, Alexander Novikov, Gabriel Barth-Maron, Mai Gimenez,
Yury Sulsky, Jackie Kay, Jost Tobias Springenberg, Tom Eccles, Jake
Bruce, Ali Razavi, Ashley D. Edwards, Nicolas Manfred Otto Heess,
Yutian Chen, Raia Hadsell, Oriol Vinyals, Mahyar Bordbar and Nando
de Freitas. “A Generalist Agent.” Trans. Mach. Learn. Res. 2022
(2022).

[29] Driess, Danny, F. Xia, Mehdi S. M. Sajjadi, Corey Lynch, Aakanksha
Chowdhery, Brian Ichter, Ayzaan Wahid, Jonathan Tompson, Quan
Ho Vuong, Tianhe Yu, Wenlong Huang, Yevgen Chebotar, Pierre
Sermanet, Daniel Duckworth, Sergey Levine, Vincent Vanhoucke,

References 149

Karol Hausman, Marc Toussaint, Klaus Greff, Andy Zeng, Igor Mor-
datch and Peter R. Florence. “PaLM-E: An Embodied Multi-modal
Language Model.” International Conference on Machine Learning
(2023).

[30] Inoue, Y., & Ohashi, H. (2022). Prompter: Utilizing Large Language
Model Prompting for a Data Efficient Embodied Instruction Following.
ArXiv, abs/2211.03267.

[31] Liu, B., Jiang, Y., Zhang, X., Liu, Q., Zhang, S., Biswas, J., & Stone,
P. (2023). LLM+P: Empowering Large Language Models with Optimal
Planning Proficiency. ArXiv, abs/2304.11477.

[32] Singh, I., Blukis, V., Mousavian, A., Goyal, A., Xu, D., Tremblay,
J., Fox, D., Thomason, J., & Garg, A. (2022). ProgPrompt: Generat-
ing Situated Robot Task Plans using Large Language Models. 2023
IEEE International Conference on Robotics and Automation (ICRA),
11523-11530.

[33] Yu, W., Gileadi, N., Fu, C., Kirmani, S., Lee, K., Arenas, M. G., Chiang,
H.L., Erez, T., Hasenclever, L., Humplik, J., Ichter, B., Xiao, T., Xu,
P, Zeng, A., Zhang, T., Heess, N.M., Sadigh, D., Tan, J., Tassa, Y., &
Xia, F. (2023). Language to Rewards for Robotic Skill Synthesis. ArXiv,
abs/2306.08647.

[34] Kim, B., Kim, J., Kim, Y., Min, C., & Choi, J. (2023). Context-Aware
Planning and Environment-Aware Memory for Instruction Following
Embodied Agents. ArXiv, abs/2308.07241.

[35] Huang, W., Xia, F.,, Xiao, T., Chan, H., Liang, J., Florence, P.R., Zeng,
A., Tompson, J., Mordatch, I., Chebotar, Y., Sermanet, P., Brown, N.,
Jackson, T., Luu, L., Levine, S., Hausman, K., & Ichter, B. (2022). Inner
Monologue: Embodied Reasoning through Planning with Language
Models. CoArialArialnference on Robot Learning.

[36] Ouyang, L., Wu, J., Jiang, X., Almeida, D., Wainwright, C. L., Mishkin,
P, Zhang, C., Agarwal, S., Slama, K., Ray, A., Schulman, J., Hilton, J.,
Kelton, F., Miller, L.E., Simens, M., Askell, A., Welinder, P., Christiano,
P. F, Leike, J., & Lowe, R.J. (2022). Training language models to follow
instructions with human feedback. ArXiv, abs/2203.02155.

[37] Xie, Y., Yu, C., Zhu, T., Bai, J., Gong, Z., & Soh, H. (2023). Translating
Natural Language to Planning Goals with Large-Language Models.
ArXiv, abs/2302.05128.

[38] Shridhar, M., Thomason, J., Gordon, D., Bisk, Y., Han, W., Mottaghi, R.,
Zettlemoyer, L., & Fox, D. (2019). ALFRED: A Benchmark for Inter-
preting Grounded Instructions for Everyday Tasks. 2020 IEEE/CVF

150 Natural Language Conditioned Planning of Complex Robotics Tasks

Conference on Computer Vision and Pattern Recognition (CVPR),
10737-10746.

[39] Min, S., Chaplot, D.S., Ravikumar, P., Bisk, Y., & Salakhutdinov,
R. (2021). FILM: Following Instructions in Language with Modular
Methods. ArXiv, abs/2110.07342.

[40] Siciliano B., Khatib O. Handbook of Robotics. 2. izd. Berlin, Heidel-
berg: Springer-Verlag, 2016. 23041pp. ISBN 978-3-319-32550-7.

[41] Jeon J., Jung H., Yumbla F., Luong T. A., Moon H. Primitive Action
Based Combined Task and Motion Planning for the Service Robot. In:
Frontiers in Robotics and Al, 2022, 9.

[42] Gizzi E., Castro M. G., Sinapov J. Creative Problem Solving by Robots
Using Action Primitive Discovery. In: 2019 Joint IEEE 9th International
Conference on Development and Learning and Epigenetic Robotics
(ICDL-EpiRob), 2019, 228-233.

[43] Strudel R., Pashevich A., Kalevatykh I., Laptev L., Sivic J., Schmid C.
Learning to combine primitive skills: A step towards versatile robotic
manipulation. In: 2020 IEEE International Conference on Robotics and
Automation (ICRA), 2019, 4637-4643.

[44] Moeslund T. B., Hilton A., Kriiger V. A survey of advances in vision-
based human motion capture and analysis. In: Computer Vision and
Image Understanding, 2006, 104(2-3), 90-126.

[45] Simeonov A., Du Y., Kim B., Hogan F. R., Tenenbaum J. B., Agrawal
P., Rodriguez A. A Long Horizon Planning Framework for Manipulating
Rigid Pointcloud Objects. In: Conference on Robot Learning, 2020.

[46] Fikes R., Nilsson N. J. STRIPS: A New Approach to the Application of
Theorem Proving to Problem Solving. Artificial Intelligence, 1971, 2,
189-208.

[47] McDermott D., Ghallab M., Howe A. E., Knoblock C. A., Ram A.,
Veloso M. M., Weld D. S., Wilkins D. E. PDDL-the planning domain
definition language, 1998.

[48] Lin, K., Agia, C., Migimatsu, T., Pavone, M., Bohg, J. Text2Motion:
From Natural Language Instructions to Feasible Plans. In: ArXiv, 2023.

[49] Racinskis P, Arents J, Greitans M. A Motion Capture and Imitation
Learning Based Approach to Robot Control. Applied Sciences. 2022;
12(14), 7186.

[50] Jenkins O. C., Matari¢ M. J. Deriving action and behavior primitives
from human motion data. In: IEEE/RSJ International Conference on
Intelligent Robots and Systems, 2002, 3, 2551-2556.

References 151

[51] Beetz M., Stulp F., Esden-Tempski P., Fedrizzi A., Klank U., Kresse I.,
Maldonado A., Ruiz F. Generality and legibility in mobile manipulation:
Learning skills for routine tasks. In: Autonomous Robots, 2010, 28(1),
21-44.

[52] Sarathy V., Scheutz M. MacGyver problems: Ai challenges for test-
ing resourcefulness and creativity. In: Advances in Cognitive Systems,
2018, 6, 31-44.

[53] Hogan F. R., Ballester J., Dong S., Rodriguez A. Tactile Dexter-
ity: Manipulation Primitives with Tactile Feedback. In: 2020 IEEE
International Conference on Robotics and Automation (ICRA), 2020,
8863-8869.

[54] Simeonov A., Du Y., Kim B., Hogan F. R., Tenenbaum J. B., Agrawal
P., Rodriguez A. A Long Horizon Planning Framework for Manipulating
Rigid Pointcloud Objects. From: Conference on Robot Learning, 2020.

[55] Stone A., Xiao T., Lu Y., Gopalakrishnan K., Lee K., Vuong Q.H.,
Wohlhart P., Zitkovich B., Xia F., Finn C., Hausman K. Open-World
Object Manipulation using Pre-trained Vision-Language Models. In:
ArXiv, abs/2303.00905, 2023.

[56] Ugalde F. R. Compact Models of Objects for Skilled Manipulation,
2015.

[57] Mahler J., Matl M., Satish V., Danielczuk M., DeRose B., McKinley S.,
Goldberg K. Learning ambidextrous robot grasping policies. In: Science
Robotics, 2019, 4.

