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Abstract—Augmentation of the datasets of authentic mi-
croscopy images with synthetic images is a promising solution
to the problem of the limited availability of biomedical data
for training deep neural network (DNN) based classifiers. In the
present study, we use a text-to-image latent stable diffusion model
fine-tuned by means of low-rank adaptation (LoRA) to augment
a small dataset of the images of organ on chip cells. While the
resulting synthetic images appear quite similar to the authentic
images on which the low-rank adaptation was performed, we
find that neither training the EfficientNetB7 DNN model solely
on the synthetic data nor augmentation of the real-world dataset
with different proportions (10, 25, 50, and 75 percent) of these
data leads to the improvement of the accuracy of the model. The
findings of our study suggest that a further exploration of the
low-rank adaptation options is needed to fully use the capacity
of latent diffusion models for the synthesis of biomedical images.

I. INTRODUCTION

Deep neural networks (DNNs) have recently been success-
fully applied to a number of tasks for the digital processing
and analysis of biomedical images such as segmentation of
endoscopy and nuclei microscopy images [1] and classification
of X-ray images [2]. Their main advantages are that they
do not require manual feature engineering, as they learn
from the training data on their own, and high accuracy: in
particular, they have even outperformed human experts on
some biomedical image classification tasks [3]. The main
shortcomings of DNNs are that they typically require a lot
of computing power, especially during training, their inner
workings are not transparent, as they operate in a black box-
like manner [4], and they need a lot of data for training [5]. The
last problem is particularly topical for DNN applications to the
biomedical image processing for two reasons: first, datasets
of such images tend to be comparatively small; second, in
multiclass classification tasks, some classes in biomedical
datasets are typically underrepresented, as some conditions
(e.g., a rare form of a tumour) are observed less frequently.

There are several approaches to tackling the problem of
the availability of biomedical images. First, it is possible to
use different data augmentation techniques such as image

rotations, flipping and making images darker or lighter to
increase the amount of the training data. Second, instead of
training DNN from scratch, one can use transfer learning [5],
that is, retrain (partly or fully) a DNN previously trained on a
large dataset such as ImageNet [6] or COCO [7] on biomedical
images, thus making use of the general visual representations
that the model has already learned. Finally, a promising and
rapidly developing possible solution is to generate synthetic
biomedical images and either train DNN solely on them or
use these images to augment real-world biomedical image
datasets. A common approach to the generation of synthetic
imagery is the use of Generative Adversarial Networks (GANs,
[8]), yet they are known to be fragile and difficult to train
[9]. Therefore, it is worth considering an alternative approach,
namely, using one of the currently very popular large text-
to-image models such as Midjourney [10], DALL-E [11] or
Stable Diffusion [12], which have demonstrated an impres-
sive capacity to generate synthetic data for various domains
from cartoons to radiology [13] and have publicly available
implementations that are quite easy to use. These large image
synthesis models were not originally trained on the data that
would make them capable of generating such domain-specific
data as biomedical images, and retraining them from scratch
would require a lot of computing resources and would be
prohibitively expensive and time-consuming. However, it is
possible to fine-tune them on a small amount of domain-
specific data using consumer-grade hardware by means of
using such recently developed methods for that as low-rank
adaptation (LoRA, [14]).

The goal of the present study is to design a classifier
for Organ on Chip (OOC) cell microscopy images. To do
that, we train EfficientNetB7 [15] DNN model pretrained on
ImageNet both on the real-world image dataset and on the mix
of the real-world data and synthetic images that we generate
with Stable Diffusion fine-tuned with LoRA. We propose two
hypotheses, namely:

• Hypothesis 1: By using a DNN classifier, it is possible to



achieve better classification accuracy on the real-world
microscopy OOC image dataset than that of a naive
classifier;

• Hypothesis 2: It is possible to improve the classification
accuracy on the given task by means of augmenting the
real-world microscopy OOC image dataset with synthetic
data generated with Stable Diffusion model fine-tuned by
LoRA.

The rest of the paper is organised as follows. In Section II,
we provide background information pertaining to our study; in
Section III, we explain the methodology of our study; Section
IV describes the results of the study and offers a discussion;
finally, Section V outlines conclusions and suggests directions
for future work.

II. BACKGROUND

A. DNN for organ on a chip technology

Human organ on a chip (OOC) technology is meant to
replicate the environment of particular human organs in vitro
and therefore makes it potentially possible to create biomed-
ical models suitable for testing drugs and investigating the
behaviour of different pathogens in the host. To use OOC
with cells originating from human organisms such as primary
cells or differentiated iPSC (induced pluripotent stem cells)
derived from a donor, it is necessary to optimise the cultivation
conditions of the cells, which is a slow, costly, and failure-
prone process. This process can be improved and automated
by implementing an OOC cultivation system supervised by
machine learning (ML) algorithms rather than a human, as that
would potentially allow to reduce experiment time, failure rate,
and the cost of the functioning of the system. One of the key
requirements for the design of such a system is its capacity to
classify the state of the cell culture on a chip (accessible via
miscroscopy images from the camera) as ’good’, ’acceptable’,
or ’bad’, as depending on that the flow of the solution to
the chip should be maintained or increased, or the experiment
should be stopped altogether. As state-of-the-art results on
image classification tasks are currently achieved with DNNs,
it would be reasonable to use a DNN-based classifier a a part
of the ML-based system in question. However, the issue of the
availability of the data for training a DNN model inevitably
arises, as due to the current throughput of the OOC systems,
the number of the images for training and evaluating such a
model is in the order of hundreds rather than thousands, and
there are not any publicly available datasets suitable for that
task either.

B. Synthetic data for training DNN

The use of synthetic data for training DNN has recently
become increasingly popular. In the field of biomedical image
processing, synthetic data holds the promise of allowing to
create more data in case of the scarcity of the real data; that
applies both to the size of datasets in general and to the amount
of the data for underrepresented classes. The main challenge

for the use of synthetic data is that it differs from the real-
world data by being less photorealistic, which is known as the
domain gap [16].

Some well-established methods of generating synthetic data
are Variational Autoencoders (VAE) and Generative Adversar-
ial Networks (GAN). VAE [17] is a generative model that
combines the autoencoder with the principles of Bayesian
theory, allowing the development of complex generative data
models by adapting them to large datasets. VAE have been
successfully used to generate such biomedical data as brain
magnetic resonance images (MRI) [18] and endoscopic images
[19]; however, VAE also tend to suffer from producing blurry
output because of learning non-informative latent codes [20]
and unrealistic distributions of the prior vs posterior data [21].
The basic blocks of GAN architecture are two networks, a
generator and a discriminator, which play a zero-sum game of
respectively generating new synthetic samples and distinguish-
ing them from the real data [22]. GANs have been successfully
applied to a number of tasks in biomedical image processing
such as blood cell image generation [23] and generation of
the images of retinal blood vessels [24]. However, training
GANs can be challenging due to the frequently occurring
issues such as mode collapse, instability of the model, and
non-convergence [9]. Therefore, while GANs (and to a lesser
extent, VAE) remain a lively area of research with a substantial
potential for applications in biomedicine, it would be beneficial
to explore other robust and simple means of biomedical image
synthesis.

C. Text-to-image models for data synthesis

Text-to-image models such as Midjourney [10], DALL-E
[11] and Stable Diffusion [12] are currently one of the most
trending topics in AI research. While their large size and
the vast amount of the date needed to train them from zero
make their development much less accessible than that of
VAE or GAN, which are not particularly resource-demanding,
they have rapidly become very popular due to the ease of
use of the trained models. The out-of-the-box output of text-
to-image models is not likely to be suitable for biomedical
purposes, as biomedical data are too specific for these general-
purpose models; however, it is possible to overcome these
obstacles by fine-tuning text-to-image models for that purpose.
In particular, the method of low-rank adaptation (LoRA, [14])
allows to fine-tune Stable Diffusion on a small (in the order
of dozens) number of images and use the prompts passed to
the model during the fine-tuning stage to generate new data.

D. Mathematical basis of diffusion models

Diffusion-based generative models are described by a
Markov-type process to change multistage noise based on
probabilistic models of diffusion (see [25]). The model is
divided into two types of processes, forward noise process and
reverse diffusion process variance, using reparameterization
with a smaller forward magnitude. The mathematical principle
is necessary to understand the complex distribution q(x0) that
describes the pixel x0 values at each position from the input



image set X0. We can define a diffusion process to which noise
is added at time t with variance βt ∈ (0, 1)(forward process).
Once we have obtained the T states of the Markov process, it
is necessary to approximate q(xt) with the distribution p(xt)
by cleaning it from noise (reverse process). Once the model
is trained, we can take a dataset with complete noise, run it
through the p(x0:T ) process, and thus obtain new images with
X0 features.

The forward process is defined as a Gaussian distribution
q(xt|xt−1) ∼ N(µt,Σ), where µt =

√
1− βtxt−1 is the

mean value, Σ is the sum over all variances. Markov process
probabilities q(xk|xk−1) and q(xk+1|xk) are independent of
each other, it can be written as:

q(x1:T ) =

t∏
i=1

q(xt|xt−1), (1)

where T is the final step. The reparameterization trick requires
separating the stochastic part to obtain images at an arbitrary
time step t without a loop [26]. It is necessary to isolate the
stochastic component, which we denote by ϵ. At time step t,
our image will look like this:

xt =
√
1− βtxt − 1 +

√
βt, ϵt−1. (2)

After several transformations:

xt = x0

√√√√ t∏
i=1

(1− βt) + ϵ

√√√√1−
t∏

i=1

(1− βt). (3)

The choice of variance βt depends on the image resolution.
The cosine schedule is slower with noise addition and will
perform better than linear noise at low resolution [27]. The
reverse process must start with the Gaussian noise obtained in
the previous process in the last step. Next, a function has to be
chosen to approximate the mean and variance of the distribu-
tion. Choosing a statistical distance between conditional dis-
tributions requires simpler expressions to calculate gradients
easily during neural network training. Therefore, a Kullback-
Leibler (KL) divergence is selected, which determines the
measure of entropy - how much is lost when one distribution
(p(x)) describes another (q(x)), estimating the mathematical
expectation, and knowing the value of the density function at
discrete points. In this case, the diffusion models have a loss
function as KL divergence, a closed expression.

When rewriting the posterior probability q(xt|xt−1) in the
backward direction q(xt−1|xt), in order to compare with the
approximation to use KL divergence, the condition on x0

should be added. According to Bayes’ theorem, the µ terms
are obtained as follows:

µ(xt, t) =
1√

1− βt

(xt −
1− (1− βt)√

1−
∏t

i=1(1− βt)
ϵt). (4)

The variance can be equal to the parameter from the forward
process. Σ(xt, t). The loss function is:

Lt = DKL[q(xt−1|xt, x0)|p(xt−1|xt)], (5)

where DKL is KL divergence.
To fine-tune diffusion models, such methods as LoRA [14],

which is used in our work, can be employed. LoRa works
by converting the large matrix of parameters to a lower rank
matrix and then modifying (i.e., fine-tuning) it; due to a
much smaller size of the matrix than the original one, the
operations are significantly less computationally expensive.
More specifically, given the initial values of its parameters on
pre-trained weights ϕ0 and adjusted to ϕ0+∆ϕ: to maximize
the objective:

max
∑
(x,y)

|y|∑
t=1

log(pϕ(yt|x, y < t)) (6)

where pϕ(y|x) is the pre-trained model. In case of diffusion
models, LoRA specifically targets the attention layers in the
U-Net network, as they connect the semantics of the prompts
with the generative capacity of the model and therefore are
particularly relevant for fine-tuning.

III. METHODOLOGY

A. Dataset of microscopy images

In our study, we used the dataset of microscopy images that
we acquired in the course of in-vitro experiments with growing
cells for OOC. The dataset was comparatively small in size,
consisting of 822 images in JPG format, 32 of which were
RGB images, while 790 images were grayscale images; the
size of the images was 2048x1536 pixels (810 images) and
640x480 (12 images), and the bit depth was 24. The images
were labelled by biomedical experts as belonging to one of the
three classes: class ‘good’ with 500 images, class ‘acceptable’
with 212 images, and class ‘bad’ with 110 images. The
uneven distribution of images among the different classes, in
particular, the under-representation of the ’bad’ class images,
presented a challenge, as such an imbalance could potentially
have an impact on the performance of the classification model.

The dataset had a unique specification because it comprised
the images of cells of organs (lungs, intestines) taken from the
time of seeding up to several months of cultivation. It included
five distinct types of cells: Human umbilical vein endothelial
cell line (HUVEC) type group represented by 16 images, all
of which were ’good’ class images; Human small airway
epithelial cell line (HSAEC) type group consisted of 235
images distributed across ’good’ (141 images), ’acceptable’
(52 images), and ’bad’ (42 images) classes; Human lung
carcinoma cell line (A549) type group comprised 224 images
with a distribution of 98 ’good’, 80 ’acceptable’, and 46
’bad’; human epithelial colorectal adenocarcinoma cell line
(CACO) type group with 100 images with a distribution
of 45 ’good’, 39 ’acceptable’, and 16 ’bad’; lastly, Human
Pulmonary Microvascular Endothelial Cells (HPMEC) type
group, the largest in size, included 247 images, of which 200
were classified as ’good’, 41 as ’acceptable’, and 6 as ’bad’.



B. Synthetic data generation

The procedure for generating synthetic data involved split-
ting the dataset of the real-world images into 5 folds (see
Section III-C) and using each fold for creating a LoRA model
using a popular implementation1 for that. LoRA models were
generated with the following parameters: 2 repeats for each
image, training for 10 epochs, training batch size equal to
two, U-Net learning rate equal to 5E-4, text encoder learning
rate equal to 1E-4. Created LoRA models were then used
together with the Web UI implementation2 of Stable Diffusion
to generate synthetic data. Stable Diffusion Web UI was
used with the following parameters: Euler A sampler, 20
sampling steps, CGF score of 7, random seed. We generated
two datasets of synthetic images with these parameters, the
difference between them being that for one dataset, we set
the LoRA weight to 1.0, whereas for the other dataset we set
that parameter to 0.8. The impact of the weight parameter
is that a higher value results to a higher closeness of the
generated images to the original ones, whereas a lower weight
value implies a greater variability of the generated images in
comparison to the original images that the LoRA model was
generated on. Creating these two distinct datasets allowed us
to explore the impact of different values of LoRA weights on
the model performance. LoRA models were created in Google
Colab environment3, whereas synthetic images were generated
with Web UI Stable Diffusion on a PC with 16 GB RAM, Intel
i7-12700 CPU, NVIDIA RTX 3080 GPU with 10 GB VRAM,
and Windows 11 OS.

C. Training and validating DNN

We conducted experiments training EfficientNet B7 [15]
model available in Keras library pretrained on ImageNet [6]
dataset. The architecture of the model after the modifications
was as follows:

• the input layer with the resolution of 600x600 pixels;
• data augmentation layers (random rotations with the fac-

tor=0.25, random translations with the height factor=0.1
and width factor=0.1, random flips and the random con-
trast with the factor=0.1);

• basic EfficientNet B7 model with its weights frozen;
• GlobalAveragePooling2D layer;
• BatchNormalization layer with the dropout=0.2 applied

to it;
• final Dense layer with 3 neurons with the softmax acti-

vation function.
The training consisted of 30 epochs with the Adam op-

timizer (learning rate=0.001) and sparse categorical crossen-
tropy loss. The data for training was divided into 5 folds with
one fold (different each time) used as a holdout fold for cross-
validation. When the model was trained on the augmented
dataset, it was strictly observed that the synthetic data was
created using LoRA that was created only on the training data

1https://civitai.com/models/22530
2https://github.com/AUTOMATIC1111/stable-diffusion-webui
3https://colab.google/

rather than on the data in the respective holdout fold; that was
done in order to prevent the otherwise possible information
leak from the training data to the validation data. Training the
DNN model was done on a PC with 8 GB RAM, Intel i5-
2500K CPU, NVIDIA RTX 3090 GPU with 24 GB VRAM,
and Ubuntu 18.04.6 LTS OS.

IV. RESULTS AND DISCUSSION

The results of the study consist of the two main parts:
first, we generated synthetic images of the cells; second, we
trained a DNN on the datasets. The examples of the synthetic
generated images are provided in the bottom row of Figure 1.
As it can be seen, fine-tuning of Stable Diffusion with LoRA
resulted in the images that look somewhat similar to their
authentic counterparts: in particular, it can be see that the
granularity of both authentic and synthetic ’good’ images in
the left column is different from that of the ’bad’ images in
the right column, which corresponds to the presence of the
cells attached to the medium in the former case vs cells that
did not attached to the medium in the latter case. However,
due to the rather specific nature of the microscopy images,
it is not entirely clear whether the degree of similarity is
enough to ensure improved accuracy of DNN-based classifiers.
Therefore, the evaluation of the quality of the generated
images is based on the results of the experiments for the
synthetic data with the LoRA weight of 1.0 reported in Table I
and LoRA weight of 0.8 reported in Table II. As it can be
seen, the results of the experiments confirm Hypothesis 1, as
the accuracy of a naive classifier on the given dataset would
be 60.8%, i.e., the percentage of the largest class, whereas
our DNN model achieved the accuracy of 72.9%. However,
the results of the experiments do not confirm Hypothesis 2, as
augmentation of the real-world image dataset with synthetic
images resulted in the deterioration rather than improvement of
classification accuracy with the trend towards worse accuracy
corresponding to the larger percentage of the data used for
augmentation. A noteworthy trend is that the distribution of
the synthetic data appears to be more similar between samples
within each class than the respective distribution of the real-
world data, as the DNN model converges much better when
trained on the synthetic data than when trained on the real-
world data or the augmented dataset. However, the distribution
of the data between the corresponding classes of the real-world
and synthetic data appears to be markedly different, which is
particularly obvious in case of training the DNN model only
on synthetic data: in that case, the accuracy of the trained
model remains approximately on the level of a naive classifier
and the model fails to learn representations from the data.

V. CONCLUSIONS AND FUTURE WORK

The goal of this study was to develop a classification method
for the Organ on Chip system. We proposed two hypotheses;
Hypothesis 1 was confirmed, as DNN trained on the dataset
of the real-world microscopy images achieved the accuracy of
classification of 72.9%, which is better than the accuracy of
a naive classifier. However, Hypothesis 2 was not confirmed,



(a) good (b) acceptable (c) bad

(d) good (e) acceptable (f) bad

Fig. 1: Examples of three data classes: good, acceptable, bad; a, b, c - original data images; d, e, f -synthetic images generated with Stable
Diffusion fine-tuned on our dataset with LoRA.

TABLE I: Classification Results on Synthetic Data
with LoRA weight=1.0. The best result for each metric
is in bold.

Dataset Accuracy Precision Recall

Baseline: Real-world 0.729 0.731 0.715

Real-world & 10% synthetic 0.721 0.729 0.701

Real-world & 25% synthetic 0.707 0.719 0.699

Real-world & 50% synthetic 0.710 0.720 0.697

Real-world & 75% synthetic 0.696 0.702 0.680

Real-world & 100% synthetic 0.699 0.707 0.687

Synthetic only (100%) 0.614 0.617 0.608

as the augmentation of the real-world dataset with synthetic
images resulted in the deterioration rather than improvement
of the accuracy of the model. Therefore, we conclude that a
further refinement of the fine-tuning of the Stable Diffusion
model with LoRA on the cell microscopy images is needed. In
particular, we intend to explore various LoRA parameters such
as the number of epochs of training, the SimScore, and the
number of steps of generating the images. We intend to do that
by means of a large-scale search for the optimal parameters
of fine-tuning. Furthermore, we intend to fine-tune models on
more specific subsets of the available data: not just ’good’,
’bad’, and ’acceptable’ classes, but also classes corresponding

TABLE II: Classification Results on Synthetic Data
with LoRA weight=0.8. The best result for each metric
is in bold.

Dataset Accuracy Precision Recall

Baseline: Real-world 0.729 0.731 0.715

Real-world & 10% synthetic 0.718 0.729 0.702

Real-world & 25% synthetic 0.704 0.709 0.69

Real-world & 50% synthetic 0.693 0.698 0.679

Real-world & 75% synthetic 0.707 0.718 0.696

Real-world & 100% synthetic 0.701 0.709 0.685

Synthetic only (100%) 0.621 0.63 0.595

to specific cell types in our dataset.

ACKNOWLEDGMENT

This work was supported by the project ’AI-improved organ
on chip cultivation for personalised medicine (AimOOC)’
(contract with Central Finance and Contracting Agency of
Republic of Latvia no. 1.1.1.1/21/A/079; the project is co-
financed by REACT-EU funding for mitigating the conse-
quences of the pandemic crisis).



REFERENCES

[1] A. Iqbal, M. Sharif, M. A. Khan, W. Nisar, and M.
Alhaisoni, “Ff-unet: A u-shaped deep convolutional
neural network for multimodal biomedical image seg-
mentation,” Cognitive Computation, vol. 14, no. 4,
pp. 1287–1302, 2022.

[2] S. Sharma, S. Gupta, D. Gupta, et al., “Performance
evaluation of the deep learning based convolutional
neural network approach for the recognition of chest
x-ray images,” Frontiers in oncology, vol. 12, p. 3111,
2022.

[3] A. Rodriguez-Ruiz, K. Lång, A. Gubern-Merida, et
al., “Stand-alone artificial intelligence for breast can-
cer detection in mammography: Comparison with 101
radiologists,” JNCI: Journal of the National Cancer
Institute, vol. 111, no. 9, pp. 916–922, 2019.

[4] M. Ivanovs, R. Kadikis, and K. Ozols, “Perturbation-
based methods for explaining deep neural networks: A
survey,” Pattern Recognition Letters, vol. 150, pp. 228–
234, 2021.

[5] H. E. Kim, A. Cosa-Linan, N. Santhanam, M. Jannesari,
M. E. Maros, and T. Ganslandt, “Transfer learning for
medical image classification: A literature review,” BMC
medical imaging, vol. 22, no. 1, p. 69, 2022.

[6] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and
L. Fei-Fei, “Imagenet: A large-scale hierarchical image
database,” in 2009 IEEE conference on computer vision
and pattern recognition, Ieee, 2009, pp. 248–255.

[7] T.-Y. Lin, M. Maire, S. Belongie, et al., “Microsoft
coco: Common objects in context,” in Computer
Vision–ECCV 2014: 13th European Conference, Zurich,
Switzerland, September 6-12, 2014, Proceedings, Part
V 13, Springer, 2014, pp. 740–755.

[8] I. Goodfellow, J. Pouget-Abadie, M. Mirza, et al.,
“Generative adversarial networks,” Advances in Neural
Information Processing Systems, vol. 27, pp. 2672–
2680, 2014.

[9] H. Chen, “Challenges and corresponding solutions of
generative adversarial networks (gans): A survey study,”
in Journal of Physics: Conference Series, IOP Publish-
ing, vol. 1827, 2021, p. 012 066.

[10] Midjourney, 2022. [Online]. Available: https : / / www.
midjourney.com.

[11] A. Ramesh, M. Pavlov, G. Goh, et al., “Zero-shot text-
to-image generation,” in International Conference on
Machine Learning, PMLR, 2021, pp. 8821–8831.

[12] R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and
B. Ommer, “High-resolution image synthesis with latent
diffusion models,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recogni-
tion, 2022, pp. 10 684–10 695.

[13] H. Ali, S. Murad, and Z. Shah, “Spot the fake lungs:
Generating synthetic medical images using neural diffu-
sion models,” arXiv preprint arXiv:2211.00902, 2022.

[14] E. J. Hu, Y. Shen, P. Wallis, et al., “Lora: Low-rank
adaptation of large language models,” arXiv preprint
arXiv:2106.09685, 2021.

[15] M. Tan and Q. Le, “Efficientnet: Rethinking model
scaling for convolutional neural networks,” in Interna-
tional conference on machine learning, PMLR, 2019,
pp. 6105–6114.

[16] S. I. Nikolenko, Synthetic data for deep learning.
Springer, 2021, vol. 174.

[17] D. P. Kingma and M. Welling, “Auto-encoding varia-
tional bayes,” arXiv preprint arXiv:1312.6114, 2013.

[18] A. Volokitin, E. Erdil, N. Karani, et al., “Modelling
the distribution of 3d brain mri using a 2d slice vae,”
in Medical Image Computing and Computer Assisted
Intervention–MICCAI 2020: 23rd International Confer-
ence, Lima, Peru, October 4–8, 2020, Proceedings, Part
VII 23, Springer, 2020, pp. 657–666.

[19] D. E. Diamantis, P. Gatoula, and D. K. Iakovidis,
“Endovae: Generating endoscopic images with a varia-
tional autoencoder,” in 2022 IEEE 14th Image, Video,
and Multidimensional Signal Processing Workshop
(IVMSP), IEEE, 2022, pp. 1–5.

[20] Y. Kim, S. Wiseman, A. Miller, D. Sontag, and A.
Rush, “Semi-amortized variational autoencoders,” in
International Conference on Machine Learning, PMLR,
2018, pp. 2678–2687.

[21] J. Tomczak and M. Welling, “Vae with a vampprior,” in
International Conference on Artificial Intelligence and
Statistics, PMLR, 2018, pp. 1214–1223.

[22] K. Wang, C. Gou, Y. Duan, Y. Lin, X. Zheng, and F.-Y.
Wang, “Generative adversarial networks: Introduction
and outlook,” IEEE/CAA Journal of Automatica Sinica,
vol. 4, no. 4, pp. 588–598, 2017.

[23] L. Ma, R. Shuai, X. Ran, W. Liu, and C. Ye, “Combin-
ing dc-gan with resnet for blood cell image classifica-
tion,” Medical & biological engineering & computing,
vol. 58, pp. 1251–1264, 2020.

[24] T. Iqbal and H. Ali, “Generative adversarial network for
medical images (mi-gan),” Journal of medical systems,
vol. 42, pp. 1–11, 2018.

[25] J. Sohl-Dickstein, E. Weiss, N. Maheswaranathan, and
S. Ganguli, “Deep unsupervised learning using nonequi-
librium thermodynamics,” in International Conference
on Machine Learning, PMLR, 2015, pp. 2256–2265.

[26] J. Ho, A. Jain, and P. Abbeel, “Denoising diffusion
probabilistic models,” Advances in Neural Information
Processing Systems, vol. 33, pp. 6840–6851, 2020.

[27] A. Q. Nichol and P. Dhariwal, “Improved denoising
diffusion probabilistic models,” in International Con-
ference on Machine Learning, PMLR, 2021, pp. 8162–
8171.

https://www.midjourney.com
https://www.midjourney.com

	Introduction
	Background
	DNN for organ on a chip technology
	Synthetic data for training DNN
	Text-to-image models for data synthesis
	Mathematical basis of diffusion models

	Methodology
	Dataset of microscopy images
	Synthetic data generation
	Training and validating DNN

	Results and discussion
	Conclusions and future work

