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Abstract
This paper presents an experimental study on radio fre-

quency (RF) fingerprinting of Bluetooth Classic devices.
Our research aims to provide a practical evaluation of the
possibilities for RF fingerprinting of everyday Bluetooth
connected devices that may cause privacy risks. We have
built an experimental setup for recording Bluetooth connec-
tion in a radio frequency isolated environment using com-
mercially available SDR (software defined radio) systems,
extracted fingerprints of the Bluetooth radio data in the form
of carrier frequency offset and scaling factor from 6 differ-
ent devices, and performed k-nearest neighbors (kNN) clas-
sification achieving 84% accuracy. The experiment demon-
strates that no matter what privacy measures are being taken
in the protocol layer, the physical layer leaks significant in-
formation about the device to unauthorized listeners. In the
context of the ever-growing Bluetooth device market, this
research serves as a clarion call for device manufacturers,
regulators, and end-users to acknowledge the privacy risks
posed by RF fingerprinting and lays a foundation for more
sizeable Bluetooth fingerprinting analysis research.
1 Introduction

Bluetooth devices are ubiquitous in our society, as the an-
nual Bluetooth device shipments worldwide stood at 4.9 bil-
lion units in 2022 and yearly shipments are forecast to reach
7.6 billion units in 2027 [8], the impact of any privacy or
security risks they might pose is potentially very high.

With the advances in technology, devices are becoming
more sophisticated and can collect a wide range of data about
the user - location, sensor data, connection metadata, bio-

metric data, personalized settings, and others. The exchange
of data typically occurs between various devices, such as
smartphones, wearable devices, laptops, and peripheral de-
vices, but the thing that does not change is that they usu-
ally use popular Bluetooth or Bluetooth Low Energy (BLE)
standards which we are investigating. The devices are also
ubiquitous enough that the activities of many people can be
tracked by detecting the presence of a particular Bluetooth
device.

The purpose of this research is to evaluate the feasibil-
ity of identifying unique Bluetooth devices without relying
on information that is broadcast on higher Bluetooth abstrac-
tion layers like broadcasted device name or its MAC address.
RF fingerprinting is one of the emerging techniques that can
identify a specific device or type/model of the device by an-
alyzing radio waveforms generated by the device under test
and extracting unique features from it. Because these unique
features arise from physical imperfections of Bluetooth radio
chip they are impossible to fix by using any protocol layer
anonymization features like MAC address randomization.

Fingerprinting can make attacks on devices more person-
alized thus it is important to investigate its effectiveness be-
fore offering countermeasures. However, Bluetooth device
RF fingerprinting is a relatively unexplored research topic,
and the practical aspects of extracting unique fingerprints
using commercially available off-the-shelf devices like Soft-
ware Defined Radios (SDR) remain a significant area of in-
vestigation. Additionally, we aim to determine the precision
and accuracy of these extracted fingerprints in order to as-
sess the viability of RF fingerprinting as a means of device
identification.

To accomplish this, the research methodology involves
a review of RF fingerprinting literature and a practical im-
plementation for extracting multiple fingerprint types from
intercepted radio packets between the Device Under Test
(DUT) and another communication party. Interception is
done using SDRs in a radio frequency-isolated environment.
The precision and accuracy of the fingerprinting are evalu-
ated after device identification using the kNN classification
algorithm.



2 Background
In order to provide context on the analyzed process and

experimental setup, it is first necessary to discuss the core
concepts of Bluetooth communications and the privacy-
related parts of the standard. We also introduce the concept
of RF fingerprinting and describe various fingerprinting tech-
niques found in the literature.

2.1 Bluetooth Classic and Bluetooth Low En-
ergy

Bluetooth is a continuously evolving standard catering to
different use cases, branching into two main options: Blue-
tooth Classic and Bluetooth Low Energy. Bluetooth oper-
ates within the unlicensed industrial, scientific, and medical
(ISM) frequency band, spanning from 2.402 to 2.480 GHz.

Bluetooth Classic, also known as Bluetooth Basic
Rate/Enhanced Data Rate (BR/EDR), is a low-power com-
munication standard primarily used for audio streaming and
data transfer. On the physical layer, it utilizes 79 channels
with a bandwidth of 1 MHz each. In contrast, Bluetooth
Low Energy (BLE) was introduced as part of the Bluetooth
4.0 standard and is specifically designed for low-energy use
cases such as Internet of Things (IoT), smart home devices,
and wearables. It operates within the same frequency range
but utilizes 40 channels, each with a bandwidth of 2 MHz.
Both variations of Bluetooth employ a master-slave archi-
tecture, where one master device coordinates communica-
tion with slave devices. Bluetooth uses Frequency-Hopping
Spread Spectrum (FHSS) which essentially means that com-
munication happens on one channel at a time, but the chosen
channel is rapidly changing. The order of channels used or
”hopping sequence” is derived from the internal clock of the
master device so it is a very low probability that some other
Bluetooth connection would interfere. Also, this sequence is
unknown to third parties [3] [2].

Each Bluetooth device has a Bluetooth Device Name (the
user-friendly name) - a UTF-8 string, which it exposes to re-
mote devices without authentication or authorization. When
the user enables Bluetooth scanning on a smartphone, this
name is listed. Additionally, every Bluetooth device has a
Bluetooth Address (BD ADDR), which is similar to a MAC
address used for internet-connected devices. The BD ADDR
is a 48-bit value that serves as a unique identifier for the
Bluetooth device. It can be either a public device address
or a random device address, depending on the choice made
by the device developers. The device name can usually also
be changed by end users.

The public device address ranges need to be registered
with the Institute of Electrical and Electronics Engineers
(IEEE), but a more prevalent type of address used is the ran-
dom device address. When establishing a connection with a
device utilizing a random device address, an Identity Resolv-
ing Key (IRK) is exchanged with a trusted device. This IRK
assists in resolving the true BD ADDR from the broadcasted
random device address. The purpose of this mechanism is to
mitigate tracking risks associated with static addresses and
to enhance user privacy [3]. For example, on an iPhone, the
devices listed under ”Bluetooth, My Devices” consider this
phone as a trusted device.

2.2 RF fingerprinting
Fingerprinting in the context of electronic devices and

their cyber security is a method where devices are distin-
guished and identified using a compilation of their unique
features and characteristics. In this research, we deal with
RF fingerprints. We look at the physical waveforms gen-
erated by radio chipsets without interpreting them as proto-
col fields for the Bluetooth protocol stack since parts of the
standard that would allow us to identify the transmitting de-
vice - address, and name, can be changed by either developer
and/or user and thus are not reliable identifications.

One method to identify a device is by analyzing its gener-
ated signal ramp-up or ramp-down time, i.e., transient signal,
which happens at every generated waveform while the trans-
mitter turns on or off. These transient signals exhibit distinct
characteristics that can be used to differentiate between dif-
ferent devices. Various methods exist to determine the start
and stop times of the transient signal for individual packets:
Bayesian Step Change Detection, Variance Fractal Dimen-
sion Threshold Detection, and others [12]. Existing research
has shown that this method can yield very high classification
accuracy, however, it also requires a recording device with a
very high sampling rate such as a digital oscilloscope. The
use of a high sampling rate is essential to capture the fine de-
tails and rapid changes in the transient signals accurately. In
a study conducted by Kose et al. [7] researchers used a sam-
ple rate of 5 GSamples/s which would generate very large
amounts of data. Since we plan to publish our dataset at a
later time, sharing the entire large dataset can be unreason-
able from a logistical standpoint and also prohibits potential
third parties from adding their own data to this dataset, as
prohibitively expensive equipment would be required in or-
der to do so.

While carrier frequencies that should be used by Blue-
tooth devices are defined in the specification, in practice, the
actual generated signal may have some unwanted frequency
offset due to imperfections in the internal clock of the trans-
mitter. In the context of RF fingerprinting the carrier fre-
quency offset (CFO) can be used as an additional charac-
teristic. Even so, it is important to note that the frequency
offset is highly dependent on oscillator temperature, and em-
bedded devices like smartphones are particularly exposed to
temperature variation because of their dense internal com-
ponents and limited cooling capabilities. The study con-
ducted by Givehchian et. al [5] has shown that it is possi-
ble to extract the CFO of BLE packets collected with a low-
cost SDR and in combination with In-Phase/Quadrature (IQ)
offset this can generate accurate RF fingerprints. Although
the IQ offset is a fingerprint that is only present in devices
that use combined chipsets for multiple communication stan-
dards like Bluetooth and Wi-Fi, Givehchian et. al has shown
that CFO which is present in every Bluetooth chipset, is a
viable component of the fingerprint.

There are studies that have explored the topic of Blue-
tooth device indoor localization by analyzing the Received
Signal Strength Indication (RSSI) of received packets and
utilizing a fingerprinting technique to estimate the location of
the transmitter [10]. We aim to complement this knowledge
that RSSI can identify devices and our practical findings on



Figure 1. Advertising data packets for 3 Bluetooth devices in radio-isolated environment

how different signal amplitudes appear for various devices
in the same environment as seen in Figure 1. In practical
scenarios, variations in signal amplitude, along with Carrier
Frequency Offset (CFO), need to be corrected to ensure the
signal falls within the desired amplitude range of approxi-
mately [-1;1], before passing it to the demodulator to ensure
a higher probability of receiving correct bits. The way to
normalize signals amplitude to the required amplitude range
is by multiplying it with some constant. This scaling factor
constant which takes into account all variations in amplitude
can also be used as an RF fingerprint.

3 Threat model
There are several privacy and security concerns that arise

from the possibility of fingerprint extraction from Bluetooth-
enabled devices. The most obvious threat is related to un-
wanted tracking of the device itself or the person or vehicle
carrying it without the consent of the device owner. More
devious attack vectors include the identification of a specific
Bluetooth device model or even hardware version in order
to exploit device-specific vulnerabilities. A related threat to
the identification of specific device models carried by unsus-
pecting persons involves more targeted attacks that involve
the knowledge about the device model or capabilities, such
as spear phishing using customized prompts that refer to the
specific accessory device being used or even preparing phys-
ical in-person attacks on the device, that require knowledge
of the device model used, such as plugging in infected mem-
ory sticks or replacing it with an identically looking altered
model (e.g. compromised Bluetooth mouse or keyboard).

On the other hand, identification of the carried Bluetooth
devices and related known vulnerabilities could allow the
development of more effective protection measures for con-
trolling entry at secure facilities with restrictions to specific
types or capabilities of wireless devices.

4 Experimental setup
Our first goal is to record a dataset of Bluetooth device

communication while mitigating interference from other de-
vices in the crowded ISM band. To achieve this, we do all
recordings in an anechoic radio frequency isolated chamber
with SDRs and then perform RF fingerprint extraction, and
classification later. We record all phases of communication
– advertising, communication establishment, data streaming,
and disconnect. Our available test devices are listed in Table

1.

Table 1. List of test devices

Device Type
Apple Watch SE (1st gen.) Smartwatch

Corsair Katar Elite Wireless Wireless mouse
RF Wireless controller Wireless presenter remote
JBL Tune 130NC TWS Earbuds

Soundcore Liberty Air 2 Pro Earbuds
Redmi Buds 3 Earbuds

4.1 Hardware
This fingerprinting approach requires the capability to

record all possible 79 (or 40) Bluetooth channels at the same
time, which requires recording 80 MHz of bandwidth and is
a challenge for most popular low-cost SDR models. While
there are SDRs capable of capturing this bandwidth (for ex-
ample, a popular company Ettus Research offers a solution at
around 10k EUR [4]), for cost reasons we decided to capture
the traffic with a combination of 2 Ettus Research B210’s,
where each one of them will capture 40 MHz of spectrum,
resulting in a more affordable solution.

Given that many Bluetooth devices require a physical but-
ton press to start the connection and transmission process,
conducting this action while the device is inside a closed
shielded chamber presents challenges. To overcome this, we
designed and made a ”robot hand”. This mechanical device
securely holds the Bluetooth device and employs servo mo-
tors controlled by an Arduino board through an optically iso-
lated USB connection to press an appropriate physical button
on the device.

To establish a connection with DUT we still require an-
other communication party and for this, we use the Samsung
Galaxy S20 FE smartphone which is controlled with Android
Debugging Bridge (ADB) [1]. This bridge allows us to en-
able Bluetooth on the smartphone, start the pairing process
with DUT, stream data for some time, and then disconnect
without physically interacting with the smartphone. Instead,
commands are passed through optically isolated USB, pro-
viding greater consistency of experiments through the use of
control scripts.



All the USB connections including two SDRs, the An-
droid smartphone, and ”robot hand” are connected to a
USB-to-optical converter which is then connected to another
optical-to-USB converter outside the chamber and then con-
nected to a data collection PC. Optical wires minimize the
risk of picking up or transmitting unwanted radio signals
which could happen if we used regular copper USB cables.
Figures 2 and 3 show the hardware setup.

Figure 2. Data capture setup with 3 steps of the experi-
ment. During (1), (2), and (3) everything is recorded by
SDRs

Figure 3. Data capture setup

4.2 Software
To record radio data we use GNU Radio software with Et-

tus Research USRP blocks [6] with configuration parameters
described in Table 2. This way we cover all possible Blue-
tooth channels. Through this hardware and software setup,
we can capture Bluetooth device communication in a con-
trolled environment, allowing for subsequent analysis.

Table 2. SDR parametrs
USRP B210 (1) USRP B210 (2)

Center frequency 2421.5 MHz 2461.5 MHz
Sample rate 40 ·106 40 ·106

Gain 30 dB 30 dB
Output data format complex64 complex64

Output file radio lower.data radio upper.data

Because Bluetooth uses FHSS, every data packet can fall
into either radio recordings and for further analysis, we com-

bine both data streams into one. The first data file cap-
tured the frequency band between 2401.5 MHz and 2441.5
MHz and the second one the band between 2441.5 MHz and
2481.5 MHz. First, we interpolate both data streams with
a factor of 2 to match the required sample rate of 80 MHz,
next, each interpolated data stream was shifted by multiply-
ing it with a sine wave of 20 MHz and -20 MHz frequency,
respectively and finally, both streams are summed together
resulting in radio merged.data file which captures frequen-
cies from 2401.5 to 2481.5 MHz with a sample rate of 80
MHz. The process of data stream merging can be seen in
Figure 4. The frequency spectrum of the merged data file
can be seen in Figure 5. There are dips in the middle of the
spectrum because of filtering done by SDR for signals out-
side the original 40 MHz bandwidth but nevertheless, this
does not limit our ability to analyze individual packets be-
cause no Bluetooth channel falls exactly in the middle of the
spectrum but instead aligns with the borders of the filter.

Figure 4. Merging of both data streams

Next, it is needed to detect and extract individual packets
out of the merged data stream by performing energy detec-
tion, tagging detected packets and FHSS dehopping using
Sandia Labs GNU Radio out-of-tree module [11]. Dehop-
ping is realized by multiplying detected packets with their
closest Bluetooth channel frequency. The output of this pro-
cess is an individual file for each data packet at the baseband
with some noise before and after it. Although slower than
the often-used channelizing method we opted for the energy
detection method because channelized data streams are dec-
imated which could potentially negatively affect the quality
of RF fingerprints. Then each packet is low pass filtered to
remove noise and from filtered packets CFO and scaling fac-
tor is extracted. The algorithm utilized for this purpose is
derived from the work of Mike Ryan from ICE9 Consulting
LLC [9]. They used this calculation to normalize the packet
before passing it to the demodulator, but we save these val-
ues as RF fingerprints. For each detected, filtered Bluetooth
packet:

1. Separate all samples of negative and positive amplitude

2. max = median(positive samples)

3. min = median(negative samples)

4. CFO = (max−min)/2

5. scaling f actor = (max−CFO)/2
We repeat all of these processing steps for all of the test de-



vices and save the extracted fingerprint data - CFO and scal-
ing factor.

Figure 5. Frequency spectrum of radio merged.data

5 Results
Although we have a data set of the whole communication

procedure, for initial results we only use the part where DUT
is advertising and don’t include parts where the smartphone
connects to it because then we would need to filter out excess
packets sent by the smartphone. Figure 6 shows CFO vs
Scaling Factor scatter plot for 3 devices and it can be visually
seen that the data points are distinguishable between devices
therefore our RF fingerprinting method is possible at least
for the selected test devices.

Figure 6. CFO vs Scaling factor scatter plot

For quantitative evaluatation the precision of captured RF
fingerprint accuracy we apply kNN classification for all ex-
tracted fingerprints of 6 test devices. For this task, kNN was
chosen as there is a limited number of clearly distinguish-
able clusters, and for fingerprinting use cases that enables at-
tempting a classification even from a single captured packet,
matching it to known device samples. The number of neigh-
bors was chosen as k = 10, and 20% of data was used as test
data and the rest of it as training data. Figure 7 shows the

normalized confusion matrix for all extracted fingerprints of
6 test devices. Table 3 shows evaluation metrics of the kNN
classificator. Classifier achieved 84% accuracy, precision,
recall, and F1 score. It is important to note that the only 2
devices that could be confused are Corsair Katar Elite wire-
less mouse and JBL Tune 130NC TWS earbuds, every other
device is classified with 100% accuracy.

Table 3. k-NN evaluation
Accuracy 0.8424
Precision 0.8429

Recall 0.8424
F1 score 0.8407

6 Discussion and conclusions
In this study, we recorded a dataset of 6 Bluetooth test

devices in an isolated and controlled environment, capturing
the whole communication process with commercially avail-
able Ettus Research SDRs, without any significant RF in-
terference. We then extracted individual Bluetooth packets
from the entire dataset and further extracted CFO and scal-
ing factor from each individual packet as an RF fingerprint.
We verified that extracted fingerprints could be used to track
these individual devices with accuracy/precision/recall/F1
Scores of 84% by using kNN classification.

These fingerprints could be used to covertly monitor and
track individuals carrying these devices. In a hypothetical
situation, a person could be walking in a public space where
Bluetooth devices are very common, and as a part of normal
operation, their device emits Bluetooth signals. Equipped
with a database of RF fingerprints that were collected in a
controlled environment, we could deploy one or more SDRs
and passively capture the Bluetooth signals from a distance,
and afterward by continuously comparing the received sig-
nals with our RF fingerprint database, we could determine
the location and movement patterns of the individual without
their explicit consent as Givehchian et. al [5] has confirmed
by tracking individual BLE devices in field tests (although
with different fingerprint - CFO and I/Q offset).

While our experimental study provides valuable insights
about how to extract RF fingerprints and their effectiveness,
it is important to acknowledge the need for further testing in
real-world scenarios. Factors such as multipath interference
and device movement can introduce signal amplitude vari-
ations that may affect the accuracy of our ”scaling factor”
fingerprint matching approach, on the other hand because of
wearable devices internal temperature, CFO can change thus
limiting our ability to classify the wearable device. Addition-
ally, the presence of numerous transmitting devices in the
environment can pose challenges to accurate classification
At the current stage of our research, the distinction between
device-specific and model-specific fingerprints remains un-
clear, with device-specific fingerprints carrying more signifi-
cant privacy implications. It is also critical to expand the data
set significantly to allow for more significant and broad re-
sults - this work is ongoing and we plan to publish a database
of the most popular Bluetooth wearable devices at the end of
the year 2023.



Figure 7. Normalized confusion matrix for all test devices
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