Abolins V., Latash M. L. (2022). Unintentional force drifts as consequences of indirect force control with spatial referent coordinates. Neuroscience, 481, 156-165.Lasīt vairāk
Synthetic Data of Randomly Piled, Similar Objects for Deep Learning-Based Object Detection
Arents, J., Lesser, B., Bizuns, A., Kadikis, R., Buls, E., Greitans, M. (2022). Synthetic Data of Randomly Piled, Similar Objects for Deep Learning-Based Object Detection. In: Sclaroff, S., Distante, C., Leo, M., Farinella, G.M., Tombari, F. (eds) Image Analysis and Processing – ICIAP 2022. ICIAP 2022. Lecture Notes in Computer Science, vol 13232. Springer, Cham. https://doi.org/10.1007/978-3-031-06430-2_59Lasīt vairāk
Bin-Picking Solution for Randomly Placed Automotive Connectors Based on Machine Learning Techniques
Torres, P.; Arents, J.; Marques, H.; Marques, P. Bin-Picking Solution for Randomly Placed Automotive Connectors Based on Machine Learning Techniques. Electronics 2022, 11, 476. https://doi.org/10.3390/electronics11030476 Lasīt vairāk
Improving Semantic Segmentation of Urban Scenes for Self-Driving Cars with Synthetic Images
Ivanovs, Maksims, Kaspars Ozols, Artis Dobrajs, and Roberts Kadikis. 2022. "Improving Semantic Segmentation of Urban Scenes for Self-Driving Cars with Synthetic Images" Sensors 22, no. 6: 2252. https://doi.org/10.3390/s22062252 Lasīt vairāk
Construction and benchmark of an autonomous tracked mobile robot system
Ahluwalia Vaibhav, Arents Janis, Oraby Aly, Greitans Modris Construction and benchmark of an autonomous tracked mobile robot system. Robotic Systems and Applications, Jan. 2022. (in Press). https://doi.org/10.21595/rsa.2022.22336Lasīt vairāk
Smart Industrial Robot Control Trends, Challenges and Opportunities within Manufacturing
Janis Arents, Modris Greitans. 2022.g. "Smart Industrial Robot Control Trends, Challenges and Opportunities within Manufacturing" Applied Sciences 12, no. 2: 937. https://doi.org/10.3390/app12020937 Lasīt vairāk
Improving Performance of the PRYSTINE Traffic Sign Classification by Using a Perturbation-Based Explainability Approach
Sudars, Kaspars, Ivars Namatēvs, and Kaspars Ozols. 2022. "Improving Performance of the PRYSTINE Traffic Sign Classification by Using a Perturbation-Based Explainability Approach" Journal of Imaging 8, no. 2: 30. https://doi.org/10.3390/jimaging8020030Lasīt vairāk